Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295136903> ?p ?o ?g. }
- W4295136903 endingPage "101052" @default.
- W4295136903 startingPage "101052" @default.
- W4295136903 abstract "Real-time diagnosis is required to ensure the safety, reliability, and durability of the polymer electrolyte membrane fuel cell (PEMFC) system. Two categories of methods are (1) intrusive, time consuming, or require alterations to the cell architecture but provide detailed information about the system or (2) rapid and benign but low-information-yielding. A strategy based on alternating current (AC) voltage response and one-dimensional (1D) convolutional neural network (CNN) is proposed as a methodology for detailed and rapid fuel cell diagnosis. AC voltage response signals contain within them the convoluted information that is also available via electrochemical impedance spectroscopy (EIS), such as capacitive, inductive, and diffusion processes, and direct use of time-domain signals can avoid time-frequency conversion. It also overcomes the disadvantage that EIS can only be measured under steady-state conditions. The utilization of multi-frequency excitation can make the proposed approach an ideal real-time diagnostic/characterization tool for fuel cells and other electrochemical power systems." @default.
- W4295136903 created "2022-09-11" @default.
- W4295136903 creator A5020920493 @default.
- W4295136903 creator A5038190948 @default.
- W4295136903 creator A5053233463 @default.
- W4295136903 creator A5058730172 @default.
- W4295136903 creator A5084596555 @default.
- W4295136903 creator A5084777176 @default.
- W4295136903 date "2022-09-01" @default.
- W4295136903 modified "2023-10-14" @default.
- W4295136903 title "Fault diagnosis of PEMFC based on the AC voltage response and 1D convolutional neural network" @default.
- W4295136903 cites W1228850180 @default.
- W4295136903 cites W1846136580 @default.
- W4295136903 cites W1967152061 @default.
- W4295136903 cites W1972399777 @default.
- W4295136903 cites W1991297579 @default.
- W4295136903 cites W1992274525 @default.
- W4295136903 cites W2002133153 @default.
- W4295136903 cites W2002357388 @default.
- W4295136903 cites W2023721019 @default.
- W4295136903 cites W2024517531 @default.
- W4295136903 cites W2028072278 @default.
- W4295136903 cites W2035989285 @default.
- W4295136903 cites W2042211343 @default.
- W4295136903 cites W2044782383 @default.
- W4295136903 cites W2055019064 @default.
- W4295136903 cites W2056372044 @default.
- W4295136903 cites W2057892212 @default.
- W4295136903 cites W2112796928 @default.
- W4295136903 cites W2119007261 @default.
- W4295136903 cites W2210621097 @default.
- W4295136903 cites W2534344995 @default.
- W4295136903 cites W2597136874 @default.
- W4295136903 cites W2616558067 @default.
- W4295136903 cites W2620367028 @default.
- W4295136903 cites W2791822363 @default.
- W4295136903 cites W2805001701 @default.
- W4295136903 cites W2893820747 @default.
- W4295136903 cites W2963603550 @default.
- W4295136903 cites W2963838685 @default.
- W4295136903 cites W2984340083 @default.
- W4295136903 cites W2988659915 @default.
- W4295136903 cites W2993010201 @default.
- W4295136903 cites W3014473612 @default.
- W4295136903 cites W3087370002 @default.
- W4295136903 cites W3090238656 @default.
- W4295136903 cites W3100777112 @default.
- W4295136903 cites W3130785848 @default.
- W4295136903 cites W3163968108 @default.
- W4295136903 cites W3176106398 @default.
- W4295136903 cites W3209992252 @default.
- W4295136903 doi "https://doi.org/10.1016/j.xcrp.2022.101052" @default.
- W4295136903 hasPublicationYear "2022" @default.
- W4295136903 type Work @default.
- W4295136903 citedByCount "5" @default.
- W4295136903 countsByYear W42951369032022 @default.
- W4295136903 countsByYear W42951369032023 @default.
- W4295136903 crossrefType "journal-article" @default.
- W4295136903 hasAuthorship W4295136903A5020920493 @default.
- W4295136903 hasAuthorship W4295136903A5038190948 @default.
- W4295136903 hasAuthorship W4295136903A5053233463 @default.
- W4295136903 hasAuthorship W4295136903A5058730172 @default.
- W4295136903 hasAuthorship W4295136903A5084596555 @default.
- W4295136903 hasAuthorship W4295136903A5084777176 @default.
- W4295136903 hasBestOaLocation W42951369031 @default.
- W4295136903 hasConcept C103824480 @default.
- W4295136903 hasConcept C111919701 @default.
- W4295136903 hasConcept C119599485 @default.
- W4295136903 hasConcept C127313418 @default.
- W4295136903 hasConcept C127413603 @default.
- W4295136903 hasConcept C132319479 @default.
- W4295136903 hasConcept C154945302 @default.
- W4295136903 hasConcept C165205528 @default.
- W4295136903 hasConcept C165801399 @default.
- W4295136903 hasConcept C175551986 @default.
- W4295136903 hasConcept C17829176 @default.
- W4295136903 hasConcept C19118579 @default.
- W4295136903 hasConcept C192562407 @default.
- W4295136903 hasConcept C206755178 @default.
- W4295136903 hasConcept C24326235 @default.
- W4295136903 hasConcept C2987658370 @default.
- W4295136903 hasConcept C31972630 @default.
- W4295136903 hasConcept C41008148 @default.
- W4295136903 hasConcept C42360764 @default.
- W4295136903 hasConcept C81363708 @default.
- W4295136903 hasConceptScore W4295136903C103824480 @default.
- W4295136903 hasConceptScore W4295136903C111919701 @default.
- W4295136903 hasConceptScore W4295136903C119599485 @default.
- W4295136903 hasConceptScore W4295136903C127313418 @default.
- W4295136903 hasConceptScore W4295136903C127413603 @default.
- W4295136903 hasConceptScore W4295136903C132319479 @default.
- W4295136903 hasConceptScore W4295136903C154945302 @default.
- W4295136903 hasConceptScore W4295136903C165205528 @default.
- W4295136903 hasConceptScore W4295136903C165801399 @default.
- W4295136903 hasConceptScore W4295136903C175551986 @default.
- W4295136903 hasConceptScore W4295136903C17829176 @default.
- W4295136903 hasConceptScore W4295136903C19118579 @default.
- W4295136903 hasConceptScore W4295136903C192562407 @default.