Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295141396> ?p ?o ?g. }
- W4295141396 endingPage "99" @default.
- W4295141396 startingPage "83" @default.
- W4295141396 abstract "Extreme learning machine (ELM), with fast training speed and high generalization performance, has been widely used in many fields. However, it becomes inefficient or even impossible to process data with extremely large feature spaces, which is expected to be solved by quantum computing with an exponentially large quantum state space. Here, we propose a novel variational quantum extreme learning machine (VQELM). In detail, we design a special feature mapping method to achieve nonlinear transformation of the input data, replacing the hard-to-construct activation function on quantum devices. Considering that the Harrow-Hassidim-Lloyd algorithm is difficult to solve the ELM parameters on near-term quantum devices, we adopt a variational framework to facilitate implementation on the near-term noisy intermediate scale quantum computer. On both classification and regression tasks, our proposed method outperforms classical ELM in classical simulations. Moreover, the classification tasks achieved on IBM quantum simulator also show comparable classification accuracy. The final analysis shows that our proposed algorithm has an exponential improvement over classical ones for high-dimensional data processing, and is a powerful application of quantum machine learning on near-term quantum devices." @default.
- W4295141396 created "2022-09-11" @default.
- W4295141396 creator A5027475930 @default.
- W4295141396 creator A5044385826 @default.
- W4295141396 creator A5066102428 @default.
- W4295141396 creator A5077595112 @default.
- W4295141396 date "2022-11-01" @default.
- W4295141396 modified "2023-10-16" @default.
- W4295141396 title "Variational quantum extreme learning machine" @default.
- W4295141396 cites W1136074057 @default.
- W4295141396 cites W1492999010 @default.
- W4295141396 cites W1529944915 @default.
- W4295141396 cites W1572582498 @default.
- W4295141396 cites W1988369744 @default.
- W4295141396 cites W2008439590 @default.
- W4295141396 cites W2026131661 @default.
- W4295141396 cites W2035476608 @default.
- W4295141396 cites W2039361386 @default.
- W4295141396 cites W2051446825 @default.
- W4295141396 cites W2084652510 @default.
- W4295141396 cites W2103956991 @default.
- W4295141396 cites W2111072639 @default.
- W4295141396 cites W212428657 @default.
- W4295141396 cites W2154568261 @default.
- W4295141396 cites W2168676717 @default.
- W4295141396 cites W2337082154 @default.
- W4295141396 cites W2419175238 @default.
- W4295141396 cites W2559394418 @default.
- W4295141396 cites W2591077684 @default.
- W4295141396 cites W2772945754 @default.
- W4295141396 cites W2775562345 @default.
- W4295141396 cites W2781738013 @default.
- W4295141396 cites W2790388700 @default.
- W4295141396 cites W2801908214 @default.
- W4295141396 cites W2803745262 @default.
- W4295141396 cites W2804073332 @default.
- W4295141396 cites W2892374186 @default.
- W4295141396 cites W2923481626 @default.
- W4295141396 cites W2923917339 @default.
- W4295141396 cites W2962976797 @default.
- W4295141396 cites W2971371016 @default.
- W4295141396 cites W2983325721 @default.
- W4295141396 cites W3004965358 @default.
- W4295141396 cites W3034075626 @default.
- W4295141396 cites W3040832198 @default.
- W4295141396 cites W3042582303 @default.
- W4295141396 cites W3100043253 @default.
- W4295141396 cites W3101122608 @default.
- W4295141396 cites W3104395828 @default.
- W4295141396 cites W3134633772 @default.
- W4295141396 cites W3144846391 @default.
- W4295141396 cites W4213384627 @default.
- W4295141396 doi "https://doi.org/10.1016/j.neucom.2022.09.068" @default.
- W4295141396 hasPublicationYear "2022" @default.
- W4295141396 type Work @default.
- W4295141396 citedByCount "5" @default.
- W4295141396 countsByYear W42951413962022 @default.
- W4295141396 countsByYear W42951413962023 @default.
- W4295141396 crossrefType "journal-article" @default.
- W4295141396 hasAuthorship W4295141396A5027475930 @default.
- W4295141396 hasAuthorship W4295141396A5044385826 @default.
- W4295141396 hasAuthorship W4295141396A5066102428 @default.
- W4295141396 hasAuthorship W4295141396A5077595112 @default.
- W4295141396 hasConcept C104317684 @default.
- W4295141396 hasConcept C11413529 @default.
- W4295141396 hasConcept C121332964 @default.
- W4295141396 hasConcept C134306372 @default.
- W4295141396 hasConcept C137019171 @default.
- W4295141396 hasConcept C138885662 @default.
- W4295141396 hasConcept C154945302 @default.
- W4295141396 hasConcept C177148314 @default.
- W4295141396 hasConcept C185592680 @default.
- W4295141396 hasConcept C204241405 @default.
- W4295141396 hasConcept C2776401178 @default.
- W4295141396 hasConcept C2779094486 @default.
- W4295141396 hasConcept C2780150128 @default.
- W4295141396 hasConcept C33923547 @default.
- W4295141396 hasConcept C41008148 @default.
- W4295141396 hasConcept C41895202 @default.
- W4295141396 hasConcept C50644808 @default.
- W4295141396 hasConcept C51003876 @default.
- W4295141396 hasConcept C55493867 @default.
- W4295141396 hasConcept C58053490 @default.
- W4295141396 hasConcept C62520636 @default.
- W4295141396 hasConcept C62641251 @default.
- W4295141396 hasConcept C84114770 @default.
- W4295141396 hasConceptScore W4295141396C104317684 @default.
- W4295141396 hasConceptScore W4295141396C11413529 @default.
- W4295141396 hasConceptScore W4295141396C121332964 @default.
- W4295141396 hasConceptScore W4295141396C134306372 @default.
- W4295141396 hasConceptScore W4295141396C137019171 @default.
- W4295141396 hasConceptScore W4295141396C138885662 @default.
- W4295141396 hasConceptScore W4295141396C154945302 @default.
- W4295141396 hasConceptScore W4295141396C177148314 @default.
- W4295141396 hasConceptScore W4295141396C185592680 @default.
- W4295141396 hasConceptScore W4295141396C204241405 @default.
- W4295141396 hasConceptScore W4295141396C2776401178 @default.
- W4295141396 hasConceptScore W4295141396C2779094486 @default.