Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295154648> ?p ?o ?g. }
- W4295154648 endingPage "107113" @default.
- W4295154648 startingPage "107113" @default.
- W4295154648 abstract "In view of the depression characteristics such as high prevalence, high disability rate, high fatality rate, and high recurrence rate, early identification and early intervention are the most effective methods to prevent irreversible damage of brain function over time. The traditional method of depression recognition based on questionnaires and interviews is time-consuming and labor-intensive, and heavily depends on the doctor's subjective experience. Therefore, accurate, convenient and effective recognition of depression has important social value and scientific significance.This paper proposes a depression recognition framework based on feature-level fusion of spatial-temporal pervasive electroencephalography (EEG). Time series EEG data were collected by portable three-electrode EEG acquisition instrument, and mapped to a spatial complex network called visibility graph (VG). Then temporal EEG features and spatial VG metric features were extracted and selected. Based on the correlation between features and categories, the differences in contribution of individual feature are explored, and different contribution coefficients are assigned to different features as the data basis of feature-level fusion to ensure the diversity of data. A cascade forest model based on three different decision forests is designed to realize the efficient depression recognition using spatial-temporal feature-level fusion data.Experimental data were obtained from 26 depressed patients and 29 healthy controls (HC). The results of multiple control experiments show that compared with single type feature, feature-level fusion without contribution coefficient, and independent classifiers, the feature-level method with contribution coefficient of spatial-temporal has a stronger recognition ability of depression, and the highest accuracy is 92.48%.Feature-level fusion method provides an effective computer-aided tool for rapid clinical diagnosis of depression." @default.
- W4295154648 created "2022-09-11" @default.
- W4295154648 creator A5005004854 @default.
- W4295154648 creator A5008164948 @default.
- W4295154648 creator A5013462710 @default.
- W4295154648 creator A5036558091 @default.
- W4295154648 creator A5064238252 @default.
- W4295154648 creator A5085707869 @default.
- W4295154648 date "2022-11-01" @default.
- W4295154648 modified "2023-10-06" @default.
- W4295154648 title "Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition" @default.
- W4295154648 cites W1488104929 @default.
- W4295154648 cites W1989223739 @default.
- W4295154648 cites W1989793585 @default.
- W4295154648 cites W2047104613 @default.
- W4295154648 cites W2047948490 @default.
- W4295154648 cites W2055538060 @default.
- W4295154648 cites W2060192692 @default.
- W4295154648 cites W2072833030 @default.
- W4295154648 cites W2090899803 @default.
- W4295154648 cites W2103839390 @default.
- W4295154648 cites W2109925365 @default.
- W4295154648 cites W2112919847 @default.
- W4295154648 cites W2132322340 @default.
- W4295154648 cites W2156809536 @default.
- W4295154648 cites W2345475267 @default.
- W4295154648 cites W2400141102 @default.
- W4295154648 cites W2513975684 @default.
- W4295154648 cites W2589719932 @default.
- W4295154648 cites W2736814566 @default.
- W4295154648 cites W2753581293 @default.
- W4295154648 cites W2759483166 @default.
- W4295154648 cites W2790644103 @default.
- W4295154648 cites W2799687171 @default.
- W4295154648 cites W2800428573 @default.
- W4295154648 cites W2802314367 @default.
- W4295154648 cites W2885839206 @default.
- W4295154648 cites W2914503519 @default.
- W4295154648 cites W2921970009 @default.
- W4295154648 cites W2940071312 @default.
- W4295154648 cites W2947343305 @default.
- W4295154648 cites W2957822178 @default.
- W4295154648 cites W2960799161 @default.
- W4295154648 cites W2967182021 @default.
- W4295154648 cites W2969607850 @default.
- W4295154648 cites W2970963824 @default.
- W4295154648 cites W3014634271 @default.
- W4295154648 cites W3025606164 @default.
- W4295154648 cites W3029036868 @default.
- W4295154648 cites W3046632025 @default.
- W4295154648 cites W3113102112 @default.
- W4295154648 cites W3116201721 @default.
- W4295154648 cites W3131775586 @default.
- W4295154648 cites W3175162224 @default.
- W4295154648 cites W3186421317 @default.
- W4295154648 cites W3189676709 @default.
- W4295154648 cites W4224247713 @default.
- W4295154648 cites W4225581311 @default.
- W4295154648 cites W4225773342 @default.
- W4295154648 cites W4225900388 @default.
- W4295154648 cites W4312757860 @default.
- W4295154648 doi "https://doi.org/10.1016/j.cmpb.2022.107113" @default.
- W4295154648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36103735" @default.
- W4295154648 hasPublicationYear "2022" @default.
- W4295154648 type Work @default.
- W4295154648 citedByCount "3" @default.
- W4295154648 countsByYear W42951546482023 @default.
- W4295154648 crossrefType "journal-article" @default.
- W4295154648 hasAuthorship W4295154648A5005004854 @default.
- W4295154648 hasAuthorship W4295154648A5008164948 @default.
- W4295154648 hasAuthorship W4295154648A5013462710 @default.
- W4295154648 hasAuthorship W4295154648A5036558091 @default.
- W4295154648 hasAuthorship W4295154648A5064238252 @default.
- W4295154648 hasAuthorship W4295154648A5085707869 @default.
- W4295154648 hasConcept C118552586 @default.
- W4295154648 hasConcept C138885662 @default.
- W4295154648 hasConcept C153180895 @default.
- W4295154648 hasConcept C154945302 @default.
- W4295154648 hasConcept C15744967 @default.
- W4295154648 hasConcept C2776401178 @default.
- W4295154648 hasConcept C33954974 @default.
- W4295154648 hasConcept C41008148 @default.
- W4295154648 hasConcept C41895202 @default.
- W4295154648 hasConcept C522805319 @default.
- W4295154648 hasConceptScore W4295154648C118552586 @default.
- W4295154648 hasConceptScore W4295154648C138885662 @default.
- W4295154648 hasConceptScore W4295154648C153180895 @default.
- W4295154648 hasConceptScore W4295154648C154945302 @default.
- W4295154648 hasConceptScore W4295154648C15744967 @default.
- W4295154648 hasConceptScore W4295154648C2776401178 @default.
- W4295154648 hasConceptScore W4295154648C33954974 @default.
- W4295154648 hasConceptScore W4295154648C41008148 @default.
- W4295154648 hasConceptScore W4295154648C41895202 @default.
- W4295154648 hasConceptScore W4295154648C522805319 @default.
- W4295154648 hasLocation W42951546481 @default.
- W4295154648 hasLocation W42951546482 @default.
- W4295154648 hasOpenAccess W4295154648 @default.
- W4295154648 hasPrimaryLocation W42951546481 @default.