Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295207013> ?p ?o ?g. }
- W4295207013 abstract "Effective detection and classification of abnormalities, such as pipe bursts, leakage, illegal water use, and sensor failures, are critical for assisting water utilities in decision making, rapid response, and minimizing damage and disruption. This work presents a new flow data-based anomaly detection and classification method in water distribution networks. The method first establishes hourly nodal water demand forecasting models, then uses a unique integration of feature extraction technique of flow curve and convolutional neural network method to enable anomaly detection and classification from continually updated time window flow data. Verification progress from real and synthetic data of the case network shows that the proposed method can identify four common types of abnormal patterns in a fast and reliable manner with high recognition accuracy. The established models have self-learning capabilities, can process flow data in real time, and do not require hydraulic models to assist in analysis, which can be promising for wide practical applications in smart management of water distribution systems." @default.
- W4295207013 created "2022-09-12" @default.
- W4295207013 creator A5051034887 @default.
- W4295207013 creator A5072493958 @default.
- W4295207013 creator A5089778495 @default.
- W4295207013 date "2022-11-01" @default.
- W4295207013 modified "2023-10-12" @default.
- W4295207013 title "Anomaly Detection and Classification in Water Distribution Networks Integrated with Hourly Nodal Water Demand Forecasting Models and Feature Extraction Technique" @default.
- W4295207013 cites W1258423074 @default.
- W4295207013 cites W1968732018 @default.
- W4295207013 cites W1973298655 @default.
- W4295207013 cites W1974853958 @default.
- W4295207013 cites W1978815659 @default.
- W4295207013 cites W1991429615 @default.
- W4295207013 cites W2009319005 @default.
- W4295207013 cites W2015974984 @default.
- W4295207013 cites W2017056364 @default.
- W4295207013 cites W2045044116 @default.
- W4295207013 cites W2045185088 @default.
- W4295207013 cites W2045619934 @default.
- W4295207013 cites W2048523204 @default.
- W4295207013 cites W2052306804 @default.
- W4295207013 cites W2091191840 @default.
- W4295207013 cites W2112602938 @default.
- W4295207013 cites W2119437062 @default.
- W4295207013 cites W2148608678 @default.
- W4295207013 cites W2152323380 @default.
- W4295207013 cites W2171358504 @default.
- W4295207013 cites W2171901943 @default.
- W4295207013 cites W2277086328 @default.
- W4295207013 cites W2286104964 @default.
- W4295207013 cites W2311515739 @default.
- W4295207013 cites W2322925303 @default.
- W4295207013 cites W2559805328 @default.
- W4295207013 cites W2561115530 @default.
- W4295207013 cites W2567091547 @default.
- W4295207013 cites W2586931340 @default.
- W4295207013 cites W2604808181 @default.
- W4295207013 cites W2766950704 @default.
- W4295207013 cites W2885615850 @default.
- W4295207013 cites W2893564989 @default.
- W4295207013 cites W2911964244 @default.
- W4295207013 cites W2919115771 @default.
- W4295207013 cites W2970739080 @default.
- W4295207013 cites W2971689172 @default.
- W4295207013 cites W2988225935 @default.
- W4295207013 cites W3003745590 @default.
- W4295207013 cites W3008770259 @default.
- W4295207013 cites W3048318969 @default.
- W4295207013 cites W3102476541 @default.
- W4295207013 cites W3109136062 @default.
- W4295207013 cites W3129183288 @default.
- W4295207013 cites W3143873535 @default.
- W4295207013 cites W3153338408 @default.
- W4295207013 cites W3181620959 @default.
- W4295207013 cites W3206760447 @default.
- W4295207013 doi "https://doi.org/10.1061/(asce)wr.1943-5452.0001616" @default.
- W4295207013 hasPublicationYear "2022" @default.
- W4295207013 type Work @default.
- W4295207013 citedByCount "1" @default.
- W4295207013 countsByYear W42952070132023 @default.
- W4295207013 crossrefType "journal-article" @default.
- W4295207013 hasAuthorship W4295207013A5051034887 @default.
- W4295207013 hasAuthorship W4295207013A5072493958 @default.
- W4295207013 hasAuthorship W4295207013A5089778495 @default.
- W4295207013 hasConcept C111919701 @default.
- W4295207013 hasConcept C119857082 @default.
- W4295207013 hasConcept C124101348 @default.
- W4295207013 hasConcept C127413603 @default.
- W4295207013 hasConcept C138885662 @default.
- W4295207013 hasConcept C154945302 @default.
- W4295207013 hasConcept C185592680 @default.
- W4295207013 hasConcept C2776401178 @default.
- W4295207013 hasConcept C2778395939 @default.
- W4295207013 hasConcept C2988574769 @default.
- W4295207013 hasConcept C41008148 @default.
- W4295207013 hasConcept C41895202 @default.
- W4295207013 hasConcept C43617362 @default.
- W4295207013 hasConcept C4725764 @default.
- W4295207013 hasConcept C50644808 @default.
- W4295207013 hasConcept C52622490 @default.
- W4295207013 hasConcept C739882 @default.
- W4295207013 hasConcept C81363708 @default.
- W4295207013 hasConcept C87717796 @default.
- W4295207013 hasConcept C98045186 @default.
- W4295207013 hasConceptScore W4295207013C111919701 @default.
- W4295207013 hasConceptScore W4295207013C119857082 @default.
- W4295207013 hasConceptScore W4295207013C124101348 @default.
- W4295207013 hasConceptScore W4295207013C127413603 @default.
- W4295207013 hasConceptScore W4295207013C138885662 @default.
- W4295207013 hasConceptScore W4295207013C154945302 @default.
- W4295207013 hasConceptScore W4295207013C185592680 @default.
- W4295207013 hasConceptScore W4295207013C2776401178 @default.
- W4295207013 hasConceptScore W4295207013C2778395939 @default.
- W4295207013 hasConceptScore W4295207013C2988574769 @default.
- W4295207013 hasConceptScore W4295207013C41008148 @default.
- W4295207013 hasConceptScore W4295207013C41895202 @default.
- W4295207013 hasConceptScore W4295207013C43617362 @default.
- W4295207013 hasConceptScore W4295207013C4725764 @default.
- W4295207013 hasConceptScore W4295207013C50644808 @default.