Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295211022> ?p ?o ?g. }
- W4295211022 endingPage "118341" @default.
- W4295211022 startingPage "118341" @default.
- W4295211022 abstract "A phase diagram is a critical tool in materials science, but establishing it often requires a large number of experiments, especially for multi-component systems. In this work, we propose a machine learning strategy to accurately predict the phase diagram for the multi-component ferroelectric system (Ba1−x−yCaxSry)(Ti1−u−v−wZruSnvHfw)O3 by combining classification and regression methods. Based on literature data, we construct by classification a diagram that maps composition and temperature to the phase, and identify octahedral factor, Matyonov-Batsanov electronegativity, the ratio of valence electron number to nuclear charge and core electron distance (Schubert) for the A site and B site cations as the dominant physical descriptors. A neural network (NN) regression model is adopted to accurately predict phase transition temperatures, i.e. the phase boundaries, so that a phase diagram can be established in composition space. In the region of phase boundaries, the relative proportions of coexisting phases are also estimated by their prediction probability. The predicted phase labels, location boundaries and coexisting phase proportions are experimentally validated for the ceramic (Ba0.96Ca0.02Sr0.02)(Ti0.98−xZr0.02Hfx)O3. Our work provides an effective approach to establish phase diagrams for multi-component systems and also predict fine boundary information." @default.
- W4295211022 created "2022-09-12" @default.
- W4295211022 creator A5002569640 @default.
- W4295211022 creator A5007517513 @default.
- W4295211022 creator A5019433999 @default.
- W4295211022 creator A5026902132 @default.
- W4295211022 creator A5031004784 @default.
- W4295211022 creator A5038151942 @default.
- W4295211022 creator A5041971728 @default.
- W4295211022 creator A5047620654 @default.
- W4295211022 creator A5049854957 @default.
- W4295211022 creator A5060011729 @default.
- W4295211022 creator A5062833756 @default.
- W4295211022 creator A5078788102 @default.
- W4295211022 creator A5087470453 @default.
- W4295211022 date "2022-11-01" @default.
- W4295211022 modified "2023-10-05" @default.
- W4295211022 title "Machine learning assisted predictions of multi-component phase diagrams and fine boundary information" @default.
- W4295211022 cites W1986068012 @default.
- W4295211022 cites W1986120027 @default.
- W4295211022 cites W1994540800 @default.
- W4295211022 cites W2024275681 @default.
- W4295211022 cites W2040188924 @default.
- W4295211022 cites W2041070217 @default.
- W4295211022 cites W2076766291 @default.
- W4295211022 cites W2080436248 @default.
- W4295211022 cites W2085528325 @default.
- W4295211022 cites W2085991194 @default.
- W4295211022 cites W2089843324 @default.
- W4295211022 cites W2117734893 @default.
- W4295211022 cites W2155482699 @default.
- W4295211022 cites W2258702411 @default.
- W4295211022 cites W2287912327 @default.
- W4295211022 cites W2335205995 @default.
- W4295211022 cites W2396196938 @default.
- W4295211022 cites W2417922590 @default.
- W4295211022 cites W2490507458 @default.
- W4295211022 cites W2502274212 @default.
- W4295211022 cites W2559228226 @default.
- W4295211022 cites W2585556182 @default.
- W4295211022 cites W2619348695 @default.
- W4295211022 cites W2785660790 @default.
- W4295211022 cites W2794653131 @default.
- W4295211022 cites W2800583103 @default.
- W4295211022 cites W2922127369 @default.
- W4295211022 cites W3002374369 @default.
- W4295211022 cites W3016583576 @default.
- W4295211022 cites W3020314217 @default.
- W4295211022 cites W3045201048 @default.
- W4295211022 cites W3110255429 @default.
- W4295211022 cites W3138233895 @default.
- W4295211022 cites W3158622813 @default.
- W4295211022 cites W4200182929 @default.
- W4295211022 cites W4285081724 @default.
- W4295211022 doi "https://doi.org/10.1016/j.actamat.2022.118341" @default.
- W4295211022 hasPublicationYear "2022" @default.
- W4295211022 type Work @default.
- W4295211022 citedByCount "8" @default.
- W4295211022 countsByYear W42952110222022 @default.
- W4295211022 countsByYear W42952110222023 @default.
- W4295211022 crossrefType "journal-article" @default.
- W4295211022 hasAuthorship W4295211022A5002569640 @default.
- W4295211022 hasAuthorship W4295211022A5007517513 @default.
- W4295211022 hasAuthorship W4295211022A5019433999 @default.
- W4295211022 hasAuthorship W4295211022A5026902132 @default.
- W4295211022 hasAuthorship W4295211022A5031004784 @default.
- W4295211022 hasAuthorship W4295211022A5038151942 @default.
- W4295211022 hasAuthorship W4295211022A5041971728 @default.
- W4295211022 hasAuthorship W4295211022A5047620654 @default.
- W4295211022 hasAuthorship W4295211022A5049854957 @default.
- W4295211022 hasAuthorship W4295211022A5060011729 @default.
- W4295211022 hasAuthorship W4295211022A5062833756 @default.
- W4295211022 hasAuthorship W4295211022A5078788102 @default.
- W4295211022 hasAuthorship W4295211022A5087470453 @default.
- W4295211022 hasConcept C119857082 @default.
- W4295211022 hasConcept C121332964 @default.
- W4295211022 hasConcept C121864883 @default.
- W4295211022 hasConcept C149288129 @default.
- W4295211022 hasConcept C154945302 @default.
- W4295211022 hasConcept C168167062 @default.
- W4295211022 hasConcept C168900304 @default.
- W4295211022 hasConcept C177293861 @default.
- W4295211022 hasConcept C188324986 @default.
- W4295211022 hasConcept C192562407 @default.
- W4295211022 hasConcept C41008148 @default.
- W4295211022 hasConcept C44280652 @default.
- W4295211022 hasConcept C62520636 @default.
- W4295211022 hasConcept C85906118 @default.
- W4295211022 hasConcept C97355855 @default.
- W4295211022 hasConceptScore W4295211022C119857082 @default.
- W4295211022 hasConceptScore W4295211022C121332964 @default.
- W4295211022 hasConceptScore W4295211022C121864883 @default.
- W4295211022 hasConceptScore W4295211022C149288129 @default.
- W4295211022 hasConceptScore W4295211022C154945302 @default.
- W4295211022 hasConceptScore W4295211022C168167062 @default.
- W4295211022 hasConceptScore W4295211022C168900304 @default.
- W4295211022 hasConceptScore W4295211022C177293861 @default.
- W4295211022 hasConceptScore W4295211022C188324986 @default.