Matches in SemOpenAlex for { <https://semopenalex.org/work/W42952197> ?p ?o ?g. }
- W42952197 abstract "Rewriting is a computational process in which one term is derived from another by replacing a subterm with another subterm in accordance with a set of rules. If such a set of rules (rewrite system) has the property that no derivation can continue indefinitely, it is said to be terminating. Showing termination is an important component of theorem proving and of great interest in programming languages.Two methods of showing termination for rewrite systems that are self-embedding are presented. These non-simple rewrite systems can not be shown terminating by any of what are called simplification orderings. The first method of termination employs lexicographic combinations of quasi-orderings including the ordering itself applied to multisets of immediate subterms in a general path ordering. Two versions are presented. The well-founded and well-quasi general path orderings respectively require their component orderings to be well-founded and well-quasi orderings. The definitions are shown to result in well-founded and well-quasi orderings, respectively. A general condition is presented for showing termination of a rewrite system with a quasi-ordering. Conditions on the component orderings are presented which guarantee that the general conditions are satisfied. The well-quasi general path ordering is applied to several examples to show termination.The second method of showing termination is to use sets of derivations called the of a rewrite system. New results are derived that give syntactic conditions under which termination of the forward closures guarantees termination of the rewrite system. A theorem is presented that shows the relationship of forward closures with innermost rewriting. If there is a class of rewrite systems for which innermost rewriting implies termination, then termination of forward closures will imply termination as well. Restricting the set of forward closures to derivations which satisfy some strategy such as choosing an innermost redex is explored. Syntactic conditions are given for which termination of innermost or outermost forward closures implies termination in general. The method of forward closures is then used to show the termination of some example rewrite systems including the string rewriting system $0011to 111000$.A test for non-termination of a rewrite system using forward closures (FCT) is presented. A previous method (MSP) using semi-unification is analysed and it is shown that certain kinds of rewrite rules may be ignored without affecting the ability of MSP to detect non-termination. Using this result one can also show that FCT will detect non-termination in every case that MSP will, but not vice-versa. Results are also presented showing that information can be obtained from forward closures about the termination of innermost derivations from terms of limited size with all subterms in normal form. A method for computing innermost and outermost forward closures is presented which avoids extra checking of earlier parts of the derivations to guarantee the redexes remain innermost/outermost. Also given is a completion like method for generating an innermost locally confluent rewrite system which preserves innermost derivations of a given rewrite system.Finally, there are appendices describing the interface to code written in common lisp which implements the well-quasi general path ordering and showing its usage to prove termination of a rewrite system for insertion sort." @default.
- W42952197 created "2016-06-24" @default.
- W42952197 creator A5026716324 @default.
- W42952197 creator A5039993352 @default.
- W42952197 date "1996-01-01" @default.
- W42952197 modified "2023-09-25" @default.
- W42952197 title "Termination of non-simple rewrite systems" @default.
- W42952197 cites W111955572 @default.
- W42952197 cites W1481059806 @default.
- W42952197 cites W1486980090 @default.
- W42952197 cites W1495091595 @default.
- W42952197 cites W1506970162 @default.
- W42952197 cites W1520909274 @default.
- W42952197 cites W1530441764 @default.
- W42952197 cites W1589342712 @default.
- W42952197 cites W1605312248 @default.
- W42952197 cites W1939442430 @default.
- W42952197 cites W196782186 @default.
- W42952197 cites W1968386045 @default.
- W42952197 cites W1994958005 @default.
- W42952197 cites W2028125880 @default.
- W42952197 cites W2033245919 @default.
- W42952197 cites W2056181378 @default.
- W42952197 cites W2075899694 @default.
- W42952197 cites W2076508310 @default.
- W42952197 cites W2086747974 @default.
- W42952197 cites W2090626768 @default.
- W42952197 cites W2110917011 @default.
- W42952197 cites W2113547509 @default.
- W42952197 cites W2121757274 @default.
- W42952197 cites W2126018011 @default.
- W42952197 cites W2161257777 @default.
- W42952197 cites W2166060774 @default.
- W42952197 cites W2323378191 @default.
- W42952197 cites W25798763 @default.
- W42952197 cites W2803949049 @default.
- W42952197 cites W2912818154 @default.
- W42952197 cites W2913116145 @default.
- W42952197 cites W93035675 @default.
- W42952197 cites W1547038616 @default.
- W42952197 hasPublicationYear "1996" @default.
- W42952197 type Work @default.
- W42952197 sameAs 42952197 @default.
- W42952197 citedByCount "1" @default.
- W42952197 crossrefType "journal-article" @default.
- W42952197 hasAuthorship W42952197A5026716324 @default.
- W42952197 hasAuthorship W42952197A5039993352 @default.
- W42952197 hasConcept C111472728 @default.
- W42952197 hasConcept C114614502 @default.
- W42952197 hasConcept C118615104 @default.
- W42952197 hasConcept C121332964 @default.
- W42952197 hasConcept C138885662 @default.
- W42952197 hasConcept C154690210 @default.
- W42952197 hasConcept C154945302 @default.
- W42952197 hasConcept C159254197 @default.
- W42952197 hasConcept C159333733 @default.
- W42952197 hasConcept C168167062 @default.
- W42952197 hasConcept C177264268 @default.
- W42952197 hasConcept C189950617 @default.
- W42952197 hasConcept C199360897 @default.
- W42952197 hasConcept C2777735758 @default.
- W42952197 hasConcept C2780586882 @default.
- W42952197 hasConcept C33923547 @default.
- W42952197 hasConcept C41008148 @default.
- W42952197 hasConcept C41608201 @default.
- W42952197 hasConcept C61797465 @default.
- W42952197 hasConcept C62520636 @default.
- W42952197 hasConcept C97355855 @default.
- W42952197 hasConceptScore W42952197C111472728 @default.
- W42952197 hasConceptScore W42952197C114614502 @default.
- W42952197 hasConceptScore W42952197C118615104 @default.
- W42952197 hasConceptScore W42952197C121332964 @default.
- W42952197 hasConceptScore W42952197C138885662 @default.
- W42952197 hasConceptScore W42952197C154690210 @default.
- W42952197 hasConceptScore W42952197C154945302 @default.
- W42952197 hasConceptScore W42952197C159254197 @default.
- W42952197 hasConceptScore W42952197C159333733 @default.
- W42952197 hasConceptScore W42952197C168167062 @default.
- W42952197 hasConceptScore W42952197C177264268 @default.
- W42952197 hasConceptScore W42952197C189950617 @default.
- W42952197 hasConceptScore W42952197C199360897 @default.
- W42952197 hasConceptScore W42952197C2777735758 @default.
- W42952197 hasConceptScore W42952197C2780586882 @default.
- W42952197 hasConceptScore W42952197C33923547 @default.
- W42952197 hasConceptScore W42952197C41008148 @default.
- W42952197 hasConceptScore W42952197C41608201 @default.
- W42952197 hasConceptScore W42952197C61797465 @default.
- W42952197 hasConceptScore W42952197C62520636 @default.
- W42952197 hasConceptScore W42952197C97355855 @default.
- W42952197 hasLocation W429521971 @default.
- W42952197 hasOpenAccess W42952197 @default.
- W42952197 hasPrimaryLocation W429521971 @default.
- W42952197 hasRelatedWork W1488213278 @default.
- W42952197 hasRelatedWork W1504627810 @default.
- W42952197 hasRelatedWork W1512440136 @default.
- W42952197 hasRelatedWork W1538093031 @default.
- W42952197 hasRelatedWork W1563061915 @default.
- W42952197 hasRelatedWork W1568503719 @default.
- W42952197 hasRelatedWork W1577297240 @default.
- W42952197 hasRelatedWork W1608934502 @default.