Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295220462> ?p ?o ?g. }
- W4295220462 endingPage "44" @default.
- W4295220462 startingPage "29" @default.
- W4295220462 abstract "Shadows not only reduce image quality but also interfere with image interpretation, and accurate shadow extraction is the key to improving remote sensing image utilization. However, complex features lead to shadow extraction difficulties in remote sensing imagery. In this paper, an omni-scale global–local aware network (OGLANet) is proposed by analyzing the typical characteristics of shadows in remote sensing images. First, we establish a global–local aware module (GLAM) for fully extracting shadow features to solve the problem regarding the insufficient ability to control global and local network features. Second, the detailed and semantic information of shadows exists on different scales. We propose a dense feature fusion module (DFFM) between the encoder and decoder so that the detailed information can be restored in the decoding stage while retaining the semantic information. Finally, to solve the extreme scale differences of shadows, an omni-scale aggregation module (OAM) is established; this module can obtain more refined results in the prediction stage. To prove the effectiveness of our method, we compare it with state-of-the-art (SOTA) deep learning models proposed in recent studies on the same dataset. The results show that our method achieves higher accuracy and that the proposed OGLANet exhibits higher robustness and transferability than other methods." @default.
- W4295220462 created "2022-09-12" @default.
- W4295220462 creator A5004238154 @default.
- W4295220462 creator A5010212263 @default.
- W4295220462 creator A5039763333 @default.
- W4295220462 creator A5042226175 @default.
- W4295220462 creator A5051244038 @default.
- W4295220462 creator A5072407810 @default.
- W4295220462 creator A5083261303 @default.
- W4295220462 date "2022-11-01" @default.
- W4295220462 modified "2023-10-18" @default.
- W4295220462 title "An omni-scale global–local aware network for shadow extraction in remote sensing imagery" @default.
- W4295220462 cites W1998270967 @default.
- W4295220462 cites W2008162142 @default.
- W4295220462 cites W2008789742 @default.
- W4295220462 cites W2038358063 @default.
- W4295220462 cites W2065769426 @default.
- W4295220462 cites W2089063443 @default.
- W4295220462 cites W2097244687 @default.
- W4295220462 cites W2100495367 @default.
- W4295220462 cites W2122585011 @default.
- W4295220462 cites W2136922672 @default.
- W4295220462 cites W2147496167 @default.
- W4295220462 cites W2335112305 @default.
- W4295220462 cites W2415527843 @default.
- W4295220462 cites W2517180603 @default.
- W4295220462 cites W2593771152 @default.
- W4295220462 cites W2612076836 @default.
- W4295220462 cites W2761917471 @default.
- W4295220462 cites W2768114292 @default.
- W4295220462 cites W2785628721 @default.
- W4295220462 cites W2886934227 @default.
- W4295220462 cites W2908320224 @default.
- W4295220462 cites W2940726923 @default.
- W4295220462 cites W2963881378 @default.
- W4295220462 cites W2964217532 @default.
- W4295220462 cites W2976120863 @default.
- W4295220462 cites W3004088204 @default.
- W4295220462 cites W3004492228 @default.
- W4295220462 cites W3008005270 @default.
- W4295220462 cites W3023923911 @default.
- W4295220462 cites W3036679688 @default.
- W4295220462 cites W3045043985 @default.
- W4295220462 cites W3047443805 @default.
- W4295220462 cites W3047725879 @default.
- W4295220462 cites W3048218390 @default.
- W4295220462 cites W3048631361 @default.
- W4295220462 cites W3083738670 @default.
- W4295220462 cites W3097243506 @default.
- W4295220462 cites W3112503277 @default.
- W4295220462 cites W3120736405 @default.
- W4295220462 cites W3137568368 @default.
- W4295220462 cites W3165745140 @default.
- W4295220462 cites W3168367808 @default.
- W4295220462 cites W3185492945 @default.
- W4295220462 cites W4213182257 @default.
- W4295220462 cites W4226456028 @default.
- W4295220462 cites W4296916254 @default.
- W4295220462 cites W4312646610 @default.
- W4295220462 cites W2948436942 @default.
- W4295220462 doi "https://doi.org/10.1016/j.isprsjprs.2022.09.004" @default.
- W4295220462 hasPublicationYear "2022" @default.
- W4295220462 type Work @default.
- W4295220462 citedByCount "5" @default.
- W4295220462 countsByYear W42952204622022 @default.
- W4295220462 countsByYear W42952204622023 @default.
- W4295220462 crossrefType "journal-article" @default.
- W4295220462 hasAuthorship W4295220462A5004238154 @default.
- W4295220462 hasAuthorship W4295220462A5010212263 @default.
- W4295220462 hasAuthorship W4295220462A5039763333 @default.
- W4295220462 hasAuthorship W4295220462A5042226175 @default.
- W4295220462 hasAuthorship W4295220462A5051244038 @default.
- W4295220462 hasAuthorship W4295220462A5072407810 @default.
- W4295220462 hasAuthorship W4295220462A5083261303 @default.
- W4295220462 hasConcept C117797892 @default.
- W4295220462 hasConcept C121684516 @default.
- W4295220462 hasConcept C154945302 @default.
- W4295220462 hasConcept C15744967 @default.
- W4295220462 hasConcept C185592680 @default.
- W4295220462 hasConcept C205649164 @default.
- W4295220462 hasConcept C2778755073 @default.
- W4295220462 hasConcept C2987819851 @default.
- W4295220462 hasConcept C31972630 @default.
- W4295220462 hasConcept C41008148 @default.
- W4295220462 hasConcept C43617362 @default.
- W4295220462 hasConcept C4725764 @default.
- W4295220462 hasConcept C542102704 @default.
- W4295220462 hasConcept C58640448 @default.
- W4295220462 hasConcept C62649853 @default.
- W4295220462 hasConceptScore W4295220462C117797892 @default.
- W4295220462 hasConceptScore W4295220462C121684516 @default.
- W4295220462 hasConceptScore W4295220462C154945302 @default.
- W4295220462 hasConceptScore W4295220462C15744967 @default.
- W4295220462 hasConceptScore W4295220462C185592680 @default.
- W4295220462 hasConceptScore W4295220462C205649164 @default.
- W4295220462 hasConceptScore W4295220462C2778755073 @default.
- W4295220462 hasConceptScore W4295220462C2987819851 @default.
- W4295220462 hasConceptScore W4295220462C31972630 @default.