Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295242208> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4295242208 endingPage "121098" @default.
- W4295242208 startingPage "121098" @default.
- W4295242208 abstract "Natural-abundance stable isotope compositions are powerful tools for understanding complex processes across myriad scientific disciplines. However, quantitative interpretation of these signals often requires equally complex models. Previous stable isotope models have treated isotopic compositions as intrinsic properties of molecules or atoms (e.g. δ13C, 13R, etc.). This has proven to be a computationally efficient but inflexible approach. Here, we present a new isotope modelling software tool that combines computational strategies used in metabolic modeling with an understanding of natural isotope fractionations from the geosciences, called Quantifying Isotopologue Reaction Networks (QIRN, “churn”). QIRN treats isotopic properties as distributions of discrete isotopologues, i.e. molecules with different numbers and distributions of isotopic substitutions. This approach is remarkably generalizable and computationally tractable, enabling models of reaction networks with unprecedented complexity. QIRN parameterizes reactions as rate law equations with distinct isotopologues as the reactants and products. Isotope effects are implemented as small changes to the relevant isotopologues’ rate constants. Running this model forward in time gives the numerical solution for steady state isotopologue abundances. Different subsets of the isotopologue population can then be sampled to quantify numerous isotopic proprieties simultaneously (i.e. compound-specific, site-specific, and multiply-substituted isotope compositions). Furthermore, QIRN can model any physical, chemical or biological process as reversible or irreversible. As such, it incorporates both kinetic and equilibrium isotope effects. It can be readily applied to any isotope system (i.e. C, N, O, etc.), though at present can only track two isotopes of one element at a time. Given its generalizability, QIRN has a diverse range of applications. To demonstrate the flexibility and efficiency of QIRN, we reconstructed previous (intrinsic-property) models of sulfate reduction, abiotic amino acid synthesis, lipid biosynthesis, and photosynthesis. In these examples, QIRN consistently reproduced outputs from prior models and predicted isotopic anomalies that have been measured in nature. With its new approach to isotope modelling, QIRN will expand the potential complexity of modelled reaction networks, help predict isotopic signals that can direct experimental efforts, and provide a more efficient means of modeling emerging isotopic properties such as ‘clumped isotopes’." @default.
- W4295242208 created "2022-09-12" @default.
- W4295242208 creator A5002863478 @default.
- W4295242208 creator A5004533847 @default.
- W4295242208 creator A5038659435 @default.
- W4295242208 date "2022-11-01" @default.
- W4295242208 modified "2023-10-16" @default.
- W4295242208 title "Quantifying Isotopologue Reaction Networks (QIRN): A modelling tool for predicting stable isotope fractionations in complex networks" @default.
- W4295242208 cites W1595955822 @default.
- W4295242208 cites W1662236624 @default.
- W4295242208 cites W1671606636 @default.
- W4295242208 cites W1963619040 @default.
- W4295242208 cites W1992170087 @default.
- W4295242208 cites W1999607411 @default.
- W4295242208 cites W2018490369 @default.
- W4295242208 cites W2031098051 @default.
- W4295242208 cites W2054654566 @default.
- W4295242208 cites W2062870685 @default.
- W4295242208 cites W2069504412 @default.
- W4295242208 cites W2085199314 @default.
- W4295242208 cites W2091391639 @default.
- W4295242208 cites W2091699432 @default.
- W4295242208 cites W2096767559 @default.
- W4295242208 cites W2129845313 @default.
- W4295242208 cites W2156318036 @default.
- W4295242208 cites W2157227535 @default.
- W4295242208 cites W2564985432 @default.
- W4295242208 cites W2746743734 @default.
- W4295242208 cites W2762722641 @default.
- W4295242208 cites W2792715801 @default.
- W4295242208 cites W2886289776 @default.
- W4295242208 cites W2909123075 @default.
- W4295242208 cites W2925179312 @default.
- W4295242208 cites W2944003288 @default.
- W4295242208 cites W2946833337 @default.
- W4295242208 cites W2972702108 @default.
- W4295242208 cites W3090524477 @default.
- W4295242208 cites W3118607299 @default.
- W4295242208 cites W4207033094 @default.
- W4295242208 cites W4220934161 @default.
- W4295242208 cites W4226026367 @default.
- W4295242208 cites W4230351098 @default.
- W4295242208 cites W4292086538 @default.
- W4295242208 doi "https://doi.org/10.1016/j.chemgeo.2022.121098" @default.
- W4295242208 hasPublicationYear "2022" @default.
- W4295242208 type Work @default.
- W4295242208 citedByCount "1" @default.
- W4295242208 crossrefType "journal-article" @default.
- W4295242208 hasAuthorship W4295242208A5002863478 @default.
- W4295242208 hasAuthorship W4295242208A5004533847 @default.
- W4295242208 hasAuthorship W4295242208A5038659435 @default.
- W4295242208 hasBestOaLocation W42952422081 @default.
- W4295242208 hasConcept C111368507 @default.
- W4295242208 hasConcept C121332964 @default.
- W4295242208 hasConcept C127313418 @default.
- W4295242208 hasConcept C13934619 @default.
- W4295242208 hasConcept C164304813 @default.
- W4295242208 hasConcept C178790620 @default.
- W4295242208 hasConcept C185544564 @default.
- W4295242208 hasConcept C185592680 @default.
- W4295242208 hasConcept C22117777 @default.
- W4295242208 hasConcept C32909587 @default.
- W4295242208 hasConcept C51813073 @default.
- W4295242208 hasConcept C58364064 @default.
- W4295242208 hasConcept C69928629 @default.
- W4295242208 hasConceptScore W4295242208C111368507 @default.
- W4295242208 hasConceptScore W4295242208C121332964 @default.
- W4295242208 hasConceptScore W4295242208C127313418 @default.
- W4295242208 hasConceptScore W4295242208C13934619 @default.
- W4295242208 hasConceptScore W4295242208C164304813 @default.
- W4295242208 hasConceptScore W4295242208C178790620 @default.
- W4295242208 hasConceptScore W4295242208C185544564 @default.
- W4295242208 hasConceptScore W4295242208C185592680 @default.
- W4295242208 hasConceptScore W4295242208C22117777 @default.
- W4295242208 hasConceptScore W4295242208C32909587 @default.
- W4295242208 hasConceptScore W4295242208C51813073 @default.
- W4295242208 hasConceptScore W4295242208C58364064 @default.
- W4295242208 hasConceptScore W4295242208C69928629 @default.
- W4295242208 hasFunder F4320306076 @default.
- W4295242208 hasFunder F4320331934 @default.
- W4295242208 hasLocation W42952422081 @default.
- W4295242208 hasOpenAccess W4295242208 @default.
- W4295242208 hasPrimaryLocation W42952422081 @default.
- W4295242208 hasRelatedWork W1999927786 @default.
- W4295242208 hasRelatedWork W2028056867 @default.
- W4295242208 hasRelatedWork W2114994853 @default.
- W4295242208 hasRelatedWork W2328891786 @default.
- W4295242208 hasRelatedWork W2794349114 @default.
- W4295242208 hasRelatedWork W2886289776 @default.
- W4295242208 hasRelatedWork W2889013332 @default.
- W4295242208 hasRelatedWork W3101367912 @default.
- W4295242208 hasRelatedWork W3132588288 @default.
- W4295242208 hasRelatedWork W4295242208 @default.
- W4295242208 hasVolume "610" @default.
- W4295242208 isParatext "false" @default.
- W4295242208 isRetracted "false" @default.
- W4295242208 workType "article" @default.