Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295242308> ?p ?o ?g. }
- W4295242308 endingPage "993" @default.
- W4295242308 startingPage "974" @default.
- W4295242308 abstract "• Granular convexity of interval type-2 fuzzy functions is defined. • Properties of granular convex interval type-2 fuzzy functions are investigated. • Two kinds of granular solutions are presented for interval type-2 fuzzy optimization. • Optimality conditions are established for interval type-2 fuzzy optimization. Interval type-2 fuzzy optimization models have become increasingly attractive and useful in various practical applications. Nonetheless, there israre discussion on the optimality conditions of granular solutions for the problem of interval type-2 fuzzy optimization. In response to this, we introduce two kinds of granular solutions and endeavor to ascertain the conditions under which a feasible solution becomes granular-efficient in this study. Firstly, we put forth the concept of granular convexity for interval type-2 fuzzy functions, and investigate some fundamental properties. Secondly, we present the concepts of granular-efficient solutions and weakly granular-efficient solutions for optimization problems under an interval type-2 fuzzy setting. Finally,we obtain the optimality conditions for interval type-2 fuzzy optimization. Furthermore, several examples arepresented to demonstrate the proposed concepts and main results." @default.
- W4295242308 created "2022-09-12" @default.
- W4295242308 creator A5026174803 @default.
- W4295242308 creator A5072431554 @default.
- W4295242308 creator A5088889008 @default.
- W4295242308 creator A5091711243 @default.
- W4295242308 date "2022-10-01" @default.
- W4295242308 modified "2023-10-18" @default.
- W4295242308 title "Two classes of granular solutions and related optimality conditions for interval type-2 fuzzy optimization" @default.
- W4295242308 cites W1978352585 @default.
- W4295242308 cites W1980420409 @default.
- W4295242308 cites W2000020882 @default.
- W4295242308 cites W2009871771 @default.
- W4295242308 cites W2032705969 @default.
- W4295242308 cites W2038354216 @default.
- W4295242308 cites W2050676121 @default.
- W4295242308 cites W2075282455 @default.
- W4295242308 cites W2078839838 @default.
- W4295242308 cites W2089811279 @default.
- W4295242308 cites W2095292012 @default.
- W4295242308 cites W2130528655 @default.
- W4295242308 cites W2321393631 @default.
- W4295242308 cites W2343906563 @default.
- W4295242308 cites W2580890888 @default.
- W4295242308 cites W2743875864 @default.
- W4295242308 cites W2773189249 @default.
- W4295242308 cites W2793584758 @default.
- W4295242308 cites W2801266866 @default.
- W4295242308 cites W2807256486 @default.
- W4295242308 cites W2885877913 @default.
- W4295242308 cites W2921891704 @default.
- W4295242308 cites W2941877913 @default.
- W4295242308 cites W2942794255 @default.
- W4295242308 cites W2946167914 @default.
- W4295242308 cites W2958182118 @default.
- W4295242308 cites W3090479667 @default.
- W4295242308 cites W3122881245 @default.
- W4295242308 cites W3130560848 @default.
- W4295242308 cites W3153599949 @default.
- W4295242308 cites W3155884679 @default.
- W4295242308 cites W3156017056 @default.
- W4295242308 cites W3170308824 @default.
- W4295242308 cites W3191504080 @default.
- W4295242308 cites W3195307722 @default.
- W4295242308 cites W3196692092 @default.
- W4295242308 cites W3201681013 @default.
- W4295242308 cites W4211007335 @default.
- W4295242308 cites W4255833381 @default.
- W4295242308 cites W636069421 @default.
- W4295242308 doi "https://doi.org/10.1016/j.ins.2022.09.029" @default.
- W4295242308 hasPublicationYear "2022" @default.
- W4295242308 type Work @default.
- W4295242308 citedByCount "1" @default.
- W4295242308 countsByYear W42952423082023 @default.
- W4295242308 crossrefType "journal-article" @default.
- W4295242308 hasAuthorship W4295242308A5026174803 @default.
- W4295242308 hasAuthorship W4295242308A5072431554 @default.
- W4295242308 hasAuthorship W4295242308A5088889008 @default.
- W4295242308 hasAuthorship W4295242308A5091711243 @default.
- W4295242308 hasConcept C114614502 @default.
- W4295242308 hasConcept C126255220 @default.
- W4295242308 hasConcept C154945302 @default.
- W4295242308 hasConcept C18903297 @default.
- W4295242308 hasConcept C2777299769 @default.
- W4295242308 hasConcept C2778067643 @default.
- W4295242308 hasConcept C33923547 @default.
- W4295242308 hasConcept C41008148 @default.
- W4295242308 hasConcept C58166 @default.
- W4295242308 hasConcept C86803240 @default.
- W4295242308 hasConceptScore W4295242308C114614502 @default.
- W4295242308 hasConceptScore W4295242308C126255220 @default.
- W4295242308 hasConceptScore W4295242308C154945302 @default.
- W4295242308 hasConceptScore W4295242308C18903297 @default.
- W4295242308 hasConceptScore W4295242308C2777299769 @default.
- W4295242308 hasConceptScore W4295242308C2778067643 @default.
- W4295242308 hasConceptScore W4295242308C33923547 @default.
- W4295242308 hasConceptScore W4295242308C41008148 @default.
- W4295242308 hasConceptScore W4295242308C58166 @default.
- W4295242308 hasConceptScore W4295242308C86803240 @default.
- W4295242308 hasFunder F4320321001 @default.
- W4295242308 hasFunder F4320324173 @default.
- W4295242308 hasFunder F4320336035 @default.
- W4295242308 hasFunder F4320336350 @default.
- W4295242308 hasFunder F4320336567 @default.
- W4295242308 hasLocation W42952423081 @default.
- W4295242308 hasOpenAccess W4295242308 @default.
- W4295242308 hasPrimaryLocation W42952423081 @default.
- W4295242308 hasRelatedWork W2047629620 @default.
- W4295242308 hasRelatedWork W2090558690 @default.
- W4295242308 hasRelatedWork W2159964792 @default.
- W4295242308 hasRelatedWork W2349865494 @default.
- W4295242308 hasRelatedWork W2352982982 @default.
- W4295242308 hasRelatedWork W2372553222 @default.
- W4295242308 hasRelatedWork W2925832130 @default.
- W4295242308 hasRelatedWork W3157620392 @default.
- W4295242308 hasRelatedWork W3217459150 @default.
- W4295242308 hasRelatedWork W603486166 @default.
- W4295242308 hasVolume "612" @default.