Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295267497> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4295267497 abstract "Zero forcing is an iterative graph coloring process where at each discrete time step, a colored vertex with a single uncolored neighbor forces that neighbor to become colored. The zero forcing number of a graph is the cardinality of the smallest set of initially colored vertices which forces the entire graph to eventually become colored. Connected forcing is a variant of zero forcing in which the initially colored set of vertices induces a connected subgraph; the analogous parameter of interest is the connected forcing number. In this paper, we characterize the graphs with connected forcing numbers 2 and $n-2$. Our results extend existing characterizations of graphs with zero forcing numbers 2 and $n-2$; we use combinatorial and graph theoretic techniques, in contrast to the linear algebraic approach used to obtain the latter. We also present several other structural results about the connected forcing sets of a graph." @default.
- W4295267497 created "2022-09-12" @default.
- W4295267497 creator A5010899197 @default.
- W4295267497 creator A5012563339 @default.
- W4295267497 creator A5025235914 @default.
- W4295267497 date "2017-01-30" @default.
- W4295267497 modified "2023-09-26" @default.
- W4295267497 title "Graphs with Extremal Connected Forcing Numbers" @default.
- W4295267497 doi "https://doi.org/10.48550/arxiv.1701.08500" @default.
- W4295267497 hasPublicationYear "2017" @default.
- W4295267497 type Work @default.
- W4295267497 citedByCount "0" @default.
- W4295267497 crossrefType "posted-content" @default.
- W4295267497 hasAuthorship W4295267497A5010899197 @default.
- W4295267497 hasAuthorship W4295267497A5012563339 @default.
- W4295267497 hasAuthorship W4295267497A5025235914 @default.
- W4295267497 hasBestOaLocation W42952674971 @default.
- W4295267497 hasConcept C114614502 @default.
- W4295267497 hasConcept C118615104 @default.
- W4295267497 hasConcept C132525143 @default.
- W4295267497 hasConcept C134306372 @default.
- W4295267497 hasConcept C159985019 @default.
- W4295267497 hasConcept C192562407 @default.
- W4295267497 hasConcept C197115733 @default.
- W4295267497 hasConcept C2778307483 @default.
- W4295267497 hasConcept C33923547 @default.
- W4295267497 hasConcept C76444178 @default.
- W4295267497 hasConcept C76946457 @default.
- W4295267497 hasConcept C80899671 @default.
- W4295267497 hasConceptScore W4295267497C114614502 @default.
- W4295267497 hasConceptScore W4295267497C118615104 @default.
- W4295267497 hasConceptScore W4295267497C132525143 @default.
- W4295267497 hasConceptScore W4295267497C134306372 @default.
- W4295267497 hasConceptScore W4295267497C159985019 @default.
- W4295267497 hasConceptScore W4295267497C192562407 @default.
- W4295267497 hasConceptScore W4295267497C197115733 @default.
- W4295267497 hasConceptScore W4295267497C2778307483 @default.
- W4295267497 hasConceptScore W4295267497C33923547 @default.
- W4295267497 hasConceptScore W4295267497C76444178 @default.
- W4295267497 hasConceptScore W4295267497C76946457 @default.
- W4295267497 hasConceptScore W4295267497C80899671 @default.
- W4295267497 hasLocation W42952674971 @default.
- W4295267497 hasOpenAccess W4295267497 @default.
- W4295267497 hasPrimaryLocation W42952674971 @default.
- W4295267497 hasRelatedWork W1964592620 @default.
- W4295267497 hasRelatedWork W2003305701 @default.
- W4295267497 hasRelatedWork W2010965931 @default.
- W4295267497 hasRelatedWork W2013391382 @default.
- W4295267497 hasRelatedWork W2266473078 @default.
- W4295267497 hasRelatedWork W2963920438 @default.
- W4295267497 hasRelatedWork W30750922 @default.
- W4295267497 hasRelatedWork W3092119098 @default.
- W4295267497 hasRelatedWork W3117270560 @default.
- W4295267497 hasRelatedWork W4297911411 @default.
- W4295267497 isParatext "false" @default.
- W4295267497 isRetracted "false" @default.
- W4295267497 workType "article" @default.