Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295277448> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4295277448 endingPage "418" @default.
- W4295277448 startingPage "401" @default.
- W4295277448 abstract "This paper proposes an individual-based self-learning prediction method for dynamic multi-objective optimization problems, called ISPM, to effectively track the time-varying Pareto-optimal set (POS) in a dynamic environment. The ISPM adjusts the reference points by individual-based self-learning, which differs from existing approaches based on fixed reference points. The self-learning reference points are given according to the information from the previous population to divide the Pareto-optimal front (POF) into the objective space as uniformly as possible. One of the ISPM’s advantages is it can improve the influence of the corresponding non-uniform POF for the population’s prediction. Furthermore, it is known that each reference point and the original point can form a vector in the objective space. Each vector can present a subregion in the objective space. The moving direction of each subregion in the last two environments is the reference when improving the population in the new environment to realize local search. Meanwhile, we roughly calculate the change degree of the environment using the self-learning reference point sets at the last two environments to realize the global search. The comprehensive experimental results show that the proposed algorithm can effectively balance convergence and diversity compared with other state-of-the-art methods." @default.
- W4295277448 created "2022-09-12" @default.
- W4295277448 creator A5003833479 @default.
- W4295277448 creator A5011083267 @default.
- W4295277448 creator A5014297148 @default.
- W4295277448 creator A5042415262 @default.
- W4295277448 creator A5043175537 @default.
- W4295277448 creator A5053726480 @default.
- W4295277448 creator A5056663114 @default.
- W4295277448 date "2022-10-01" @default.
- W4295277448 modified "2023-09-27" @default.
- W4295277448 title "Individual-based self-learning prediction method for dynamic multi-objective optimization" @default.
- W4295277448 cites W1574490530 @default.
- W4295277448 cites W1968173975 @default.
- W4295277448 cites W1976159118 @default.
- W4295277448 cites W2022485595 @default.
- W4295277448 cites W2055142708 @default.
- W4295277448 cites W2068843161 @default.
- W4295277448 cites W2087376002 @default.
- W4295277448 cites W2126105956 @default.
- W4295277448 cites W2140886193 @default.
- W4295277448 cites W2142844925 @default.
- W4295277448 cites W2143381319 @default.
- W4295277448 cites W2150046657 @default.
- W4295277448 cites W2343489328 @default.
- W4295277448 cites W2344134522 @default.
- W4295277448 cites W2484930447 @default.
- W4295277448 cites W2554737126 @default.
- W4295277448 cites W2583496274 @default.
- W4295277448 cites W2598286865 @default.
- W4295277448 cites W2607445217 @default.
- W4295277448 cites W2612032753 @default.
- W4295277448 cites W2890747025 @default.
- W4295277448 cites W2906967888 @default.
- W4295277448 cites W2915016429 @default.
- W4295277448 cites W2941761872 @default.
- W4295277448 cites W2944270464 @default.
- W4295277448 cites W2949979053 @default.
- W4295277448 cites W2954266122 @default.
- W4295277448 cites W2954424132 @default.
- W4295277448 cites W2963014601 @default.
- W4295277448 cites W2969957945 @default.
- W4295277448 cites W3009740514 @default.
- W4295277448 cites W3020501787 @default.
- W4295277448 cites W3037258640 @default.
- W4295277448 cites W3043257788 @default.
- W4295277448 cites W3081043534 @default.
- W4295277448 cites W3154060009 @default.
- W4295277448 cites W3191057737 @default.
- W4295277448 cites W3191765428 @default.
- W4295277448 cites W4252684946 @default.
- W4295277448 cites W4362223627 @default.
- W4295277448 doi "https://doi.org/10.1016/j.ins.2022.09.022" @default.
- W4295277448 hasPublicationYear "2022" @default.
- W4295277448 type Work @default.
- W4295277448 citedByCount "5" @default.
- W4295277448 countsByYear W42952774482023 @default.
- W4295277448 crossrefType "journal-article" @default.
- W4295277448 hasAuthorship W4295277448A5003833479 @default.
- W4295277448 hasAuthorship W4295277448A5011083267 @default.
- W4295277448 hasAuthorship W4295277448A5014297148 @default.
- W4295277448 hasAuthorship W4295277448A5042415262 @default.
- W4295277448 hasAuthorship W4295277448A5043175537 @default.
- W4295277448 hasAuthorship W4295277448A5053726480 @default.
- W4295277448 hasAuthorship W4295277448A5056663114 @default.
- W4295277448 hasConcept C119857082 @default.
- W4295277448 hasConcept C126255220 @default.
- W4295277448 hasConcept C154945302 @default.
- W4295277448 hasConcept C33923547 @default.
- W4295277448 hasConcept C41008148 @default.
- W4295277448 hasConceptScore W4295277448C119857082 @default.
- W4295277448 hasConceptScore W4295277448C126255220 @default.
- W4295277448 hasConceptScore W4295277448C154945302 @default.
- W4295277448 hasConceptScore W4295277448C33923547 @default.
- W4295277448 hasConceptScore W4295277448C41008148 @default.
- W4295277448 hasFunder F4320321001 @default.
- W4295277448 hasLocation W42952774481 @default.
- W4295277448 hasOpenAccess W4295277448 @default.
- W4295277448 hasPrimaryLocation W42952774481 @default.
- W4295277448 hasRelatedWork W2961085424 @default.
- W4295277448 hasRelatedWork W3046775127 @default.
- W4295277448 hasRelatedWork W3170094116 @default.
- W4295277448 hasRelatedWork W4205958290 @default.
- W4295277448 hasRelatedWork W4285260836 @default.
- W4295277448 hasRelatedWork W4286629047 @default.
- W4295277448 hasRelatedWork W4306321456 @default.
- W4295277448 hasRelatedWork W4306674287 @default.
- W4295277448 hasRelatedWork W4386462264 @default.
- W4295277448 hasRelatedWork W4224009465 @default.
- W4295277448 hasVolume "613" @default.
- W4295277448 isParatext "false" @default.
- W4295277448 isRetracted "false" @default.
- W4295277448 workType "article" @default.