Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295280558> ?p ?o ?g. }
- W4295280558 endingPage "33185" @default.
- W4295280558 startingPage "33167" @default.
- W4295280558 abstract "To understand the characteristics of variation in porosity and permeability, the physical properties of the shale reservoir under different stress conditions play an important role in guiding shale gas production. With the shale of the Wufeng–Longmaxi Formation in the south of the Sichuan Basin as the research object, stress-dependent porosity and permeability test, high-pressure mercury injection, and scanning electron microscope test were performed in this study to thoroughly analyze the variation in physical properties of different shale lithofacies with effective stress. Besides, the stress sensitivity of different lithofacies reservoirs was evaluated by using parameters such as pore compressibility coefficient (PCC) and porosity sensitivity exponent (PSE), while the optimized support vector machine (SVM) algorithm was adopted to predict the coefficient of reservoir porosity sensitivity. According to the research results, the porosity and permeability of shale reservoirs decline as a negative exponential function. When the effective stress falls below 15 MPa, the damage rate of permeability/porosity increases rapidly with the rise of effective stress. By contrast, the permeability curvature of the shale reservoirs plunges with the rise of effective stress. It was discovered that a higher siliceous content results in a higher permeability curvature of shale, indicating the greater stress sensitivity of the reservoir. The ratio of matrix porosity to microfracture porosity determines the PSE, which is relatively low, and low aspect ratio pores contribute to high porosity compressibility and stress sensitivity. Young’s modulus shows a negative correlation with pore compressibility and a positive correlation with Poisson’s ratio. High clay minerals have a large number of low aspect ratio pores and a low elastic modulus, which leads to both high PCC and low PSE. Based on the principal component analysis, a multiclassification SVM model was established to predict the PSE, revealing that the accuracy of the sigmoid, radial basis function (RBF), and linear kernel function is consistently above 70%. According to error analysis, the accuracy can exceed 80% with the RBF kernel function and appropriate penalty factor. The research results serve to advance the research on the parameters related to overburden pressure, porosity, and permeability. Moreover, the optimized SVM algorithm is applied to make a classification prediction, which provides a reference for shale reservoir exploration and development both in theory and practice." @default.
- W4295280558 created "2022-09-12" @default.
- W4295280558 creator A5015468169 @default.
- W4295280558 creator A5015510391 @default.
- W4295280558 creator A5022086931 @default.
- W4295280558 creator A5027254893 @default.
- W4295280558 creator A5036726873 @default.
- W4295280558 creator A5040405830 @default.
- W4295280558 creator A5042229287 @default.
- W4295280558 creator A5059095488 @default.
- W4295280558 creator A5068788360 @default.
- W4295280558 creator A5075233129 @default.
- W4295280558 creator A5091429059 @default.
- W4295280558 date "2022-09-12" @default.
- W4295280558 modified "2023-10-17" @default.
- W4295280558 title "Study and Classification of Porosity Stress Sensitivity in Shale Gas Reservoirs Based on Experiments and Optimized Support Vector Machine Algorithm for the Silurian Longmaxi Shale in the Southern Sichuan Basin, China" @default.
- W4295280558 cites W1556889665 @default.
- W4295280558 cites W1560218128 @default.
- W4295280558 cites W1563088657 @default.
- W4295280558 cites W1964940342 @default.
- W4295280558 cites W1970614936 @default.
- W4295280558 cites W1980073009 @default.
- W4295280558 cites W1991316176 @default.
- W4295280558 cites W1991542088 @default.
- W4295280558 cites W1995870286 @default.
- W4295280558 cites W2001959072 @default.
- W4295280558 cites W2023699970 @default.
- W4295280558 cites W2024815249 @default.
- W4295280558 cites W2026957290 @default.
- W4295280558 cites W2031373755 @default.
- W4295280558 cites W2036781374 @default.
- W4295280558 cites W2038827290 @default.
- W4295280558 cites W2040535928 @default.
- W4295280558 cites W2044092742 @default.
- W4295280558 cites W2046522072 @default.
- W4295280558 cites W2050017535 @default.
- W4295280558 cites W2059415359 @default.
- W4295280558 cites W2071892531 @default.
- W4295280558 cites W2074009903 @default.
- W4295280558 cites W2086639504 @default.
- W4295280558 cites W2101398588 @default.
- W4295280558 cites W2116467950 @default.
- W4295280558 cites W2147699377 @default.
- W4295280558 cites W2150643484 @default.
- W4295280558 cites W2156608310 @default.
- W4295280558 cites W2159501187 @default.
- W4295280558 cites W2161810000 @default.
- W4295280558 cites W2208001298 @default.
- W4295280558 cites W2509842565 @default.
- W4295280558 cites W2520641382 @default.
- W4295280558 cites W2555313092 @default.
- W4295280558 cites W2565739594 @default.
- W4295280558 cites W2610545603 @default.
- W4295280558 cites W2749660953 @default.
- W4295280558 cites W2751710846 @default.
- W4295280558 cites W2800718634 @default.
- W4295280558 cites W2837779738 @default.
- W4295280558 cites W2890451466 @default.
- W4295280558 cites W2901143036 @default.
- W4295280558 cites W2903415012 @default.
- W4295280558 cites W2909248322 @default.
- W4295280558 cites W2917904272 @default.
- W4295280558 cites W3023087985 @default.
- W4295280558 cites W3033958200 @default.
- W4295280558 cites W3093595197 @default.
- W4295280558 cites W4213058472 @default.
- W4295280558 cites W4239748937 @default.
- W4295280558 cites W4248558854 @default.
- W4295280558 cites W4283727835 @default.
- W4295280558 doi "https://doi.org/10.1021/acsomega.2c03393" @default.
- W4295280558 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36157731" @default.
- W4295280558 hasPublicationYear "2022" @default.
- W4295280558 type Work @default.
- W4295280558 citedByCount "1" @default.
- W4295280558 countsByYear W42952805582023 @default.
- W4295280558 crossrefType "journal-article" @default.
- W4295280558 hasAuthorship W4295280558A5015468169 @default.
- W4295280558 hasAuthorship W4295280558A5015510391 @default.
- W4295280558 hasAuthorship W4295280558A5022086931 @default.
- W4295280558 hasAuthorship W4295280558A5027254893 @default.
- W4295280558 hasAuthorship W4295280558A5036726873 @default.
- W4295280558 hasAuthorship W4295280558A5040405830 @default.
- W4295280558 hasAuthorship W4295280558A5042229287 @default.
- W4295280558 hasAuthorship W4295280558A5059095488 @default.
- W4295280558 hasAuthorship W4295280558A5068788360 @default.
- W4295280558 hasAuthorship W4295280558A5075233129 @default.
- W4295280558 hasAuthorship W4295280558A5091429059 @default.
- W4295280558 hasBestOaLocation W42952805581 @default.
- W4295280558 hasConcept C120882062 @default.
- W4295280558 hasConcept C121332964 @default.
- W4295280558 hasConcept C127313418 @default.
- W4295280558 hasConcept C151730666 @default.
- W4295280558 hasConcept C153127940 @default.
- W4295280558 hasConcept C185592680 @default.
- W4295280558 hasConcept C187320778 @default.
- W4295280558 hasConcept C199289684 @default.
- W4295280558 hasConcept C41625074 @default.
- W4295280558 hasConcept C55493867 @default.