Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295288461> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4295288461 abstract "We introduce a notion of rainbow saturation and the corresponding rainbow saturation number. This is the saturation version of the rainbow Tur'an numbers whose systematic study was initiated by Keevash, Mubayi, Sudakov, and Verstraete. We give examples of graphs for which the rainbow saturation number is bounded away from the ordinary saturation number. This includes all complete graphs $K_n$ for $ngeq 4$, and several bipartite graphs. It is notable that there are non-bipartite graphs for which this is the case, as this does not happen when it comes to the rainbow extremal number versus the traditional extremal number. We also show that saturation numbers are linear for a large class of graphs, providing a partial rainbow analogue of a well known theorem of K'asonyi and Tuza. We conclude this paper with related open questions and conjectures." @default.
- W4295288461 created "2022-09-12" @default.
- W4295288461 creator A5010467709 @default.
- W4295288461 creator A5058494827 @default.
- W4295288461 creator A5066057526 @default.
- W4295288461 date "2020-03-29" @default.
- W4295288461 modified "2023-10-18" @default.
- W4295288461 title "Rainbow Saturation" @default.
- W4295288461 doi "https://doi.org/10.48550/arxiv.2003.13200" @default.
- W4295288461 hasPublicationYear "2020" @default.
- W4295288461 type Work @default.
- W4295288461 citedByCount "0" @default.
- W4295288461 crossrefType "posted-content" @default.
- W4295288461 hasAuthorship W4295288461A5010467709 @default.
- W4295288461 hasAuthorship W4295288461A5058494827 @default.
- W4295288461 hasAuthorship W4295288461A5066057526 @default.
- W4295288461 hasBestOaLocation W42952884611 @default.
- W4295288461 hasConcept C114614502 @default.
- W4295288461 hasConcept C118615104 @default.
- W4295288461 hasConcept C121332964 @default.
- W4295288461 hasConcept C132525143 @default.
- W4295288461 hasConcept C134306372 @default.
- W4295288461 hasConcept C197657726 @default.
- W4295288461 hasConcept C2776558979 @default.
- W4295288461 hasConcept C33923547 @default.
- W4295288461 hasConcept C34388435 @default.
- W4295288461 hasConcept C62520636 @default.
- W4295288461 hasConcept C9930424 @default.
- W4295288461 hasConceptScore W4295288461C114614502 @default.
- W4295288461 hasConceptScore W4295288461C118615104 @default.
- W4295288461 hasConceptScore W4295288461C121332964 @default.
- W4295288461 hasConceptScore W4295288461C132525143 @default.
- W4295288461 hasConceptScore W4295288461C134306372 @default.
- W4295288461 hasConceptScore W4295288461C197657726 @default.
- W4295288461 hasConceptScore W4295288461C2776558979 @default.
- W4295288461 hasConceptScore W4295288461C33923547 @default.
- W4295288461 hasConceptScore W4295288461C34388435 @default.
- W4295288461 hasConceptScore W4295288461C62520636 @default.
- W4295288461 hasConceptScore W4295288461C9930424 @default.
- W4295288461 hasLocation W42952884611 @default.
- W4295288461 hasOpenAccess W4295288461 @default.
- W4295288461 hasPrimaryLocation W42952884611 @default.
- W4295288461 hasRelatedWork W2158949528 @default.
- W4295288461 hasRelatedWork W2538712489 @default.
- W4295288461 hasRelatedWork W2781816256 @default.
- W4295288461 hasRelatedWork W2949690312 @default.
- W4295288461 hasRelatedWork W2952421696 @default.
- W4295288461 hasRelatedWork W3047268128 @default.
- W4295288461 hasRelatedWork W3103304230 @default.
- W4295288461 hasRelatedWork W3117927275 @default.
- W4295288461 hasRelatedWork W3135762022 @default.
- W4295288461 hasRelatedWork W4299574198 @default.
- W4295288461 isParatext "false" @default.
- W4295288461 isRetracted "false" @default.
- W4295288461 workType "article" @default.