Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295308146> ?p ?o ?g. }
- W4295308146 endingPage "13" @default.
- W4295308146 startingPage "1" @default.
- W4295308146 abstract "To measure the moisture content of granules during the industrial fluidized bed drying (FBD) process, a semi-supervised calibration model is proposed for using the near-infrared (NIR) spectroscopy to conduct in-situ measurement. To solve the dilemma of lacking sufficiently labeled samples as often encountered in various batch FBD processes, a semi-supervised variational inference PLS method is proposed to use up all the labeled and unlabeled spectra measured for calibration model building. Moreover, an adaptive Gamma distribution based sparsing algorithm is established to select the spectral variables for modeling, in order to overcome the high-dimensional input collinearity. Owing to the use of a variational inference learning approach, the constructed model can ensure not only prediction accuracy but also credibility. A numerical example and experiments on batch FBD processes of silica gel granules are shown to demonstrate the effectiveness and merit of the proposed method." @default.
- W4295308146 created "2022-09-12" @default.
- W4295308146 creator A5018614212 @default.
- W4295308146 creator A5029041038 @default.
- W4295308146 creator A5033798632 @default.
- W4295308146 creator A5045957489 @default.
- W4295308146 creator A5054835201 @default.
- W4295308146 date "2022-01-01" @default.
- W4295308146 modified "2023-10-01" @default.
- W4295308146 title "Variational PLS-Based Calibration Model Building With Semi-Supervised Learning for Moisture Measurement During Fluidized Bed Drying by NIR Spectroscopy" @default.
- W4295308146 cites W1164930623 @default.
- W4295308146 cites W1974873061 @default.
- W4295308146 cites W1993776117 @default.
- W4295308146 cites W1998814325 @default.
- W4295308146 cites W2066672404 @default.
- W4295308146 cites W2095211414 @default.
- W4295308146 cites W2117130368 @default.
- W4295308146 cites W2134615533 @default.
- W4295308146 cites W2146779498 @default.
- W4295308146 cites W2223470559 @default.
- W4295308146 cites W2235108757 @default.
- W4295308146 cites W2280175079 @default.
- W4295308146 cites W2598382254 @default.
- W4295308146 cites W2738669570 @default.
- W4295308146 cites W2768975974 @default.
- W4295308146 cites W2791748024 @default.
- W4295308146 cites W2808462996 @default.
- W4295308146 cites W2884121498 @default.
- W4295308146 cites W2886613299 @default.
- W4295308146 cites W2914134719 @default.
- W4295308146 cites W2919235887 @default.
- W4295308146 cites W2923436937 @default.
- W4295308146 cites W2927470685 @default.
- W4295308146 cites W2969756696 @default.
- W4295308146 cites W2969900607 @default.
- W4295308146 cites W2980736546 @default.
- W4295308146 cites W2991583207 @default.
- W4295308146 cites W3016474591 @default.
- W4295308146 cites W3021496598 @default.
- W4295308146 cites W3035047425 @default.
- W4295308146 cites W3137375549 @default.
- W4295308146 cites W4200196658 @default.
- W4295308146 cites W4210392771 @default.
- W4295308146 doi "https://doi.org/10.1109/tim.2022.3205663" @default.
- W4295308146 hasPublicationYear "2022" @default.
- W4295308146 type Work @default.
- W4295308146 citedByCount "2" @default.
- W4295308146 countsByYear W42953081462023 @default.
- W4295308146 crossrefType "journal-article" @default.
- W4295308146 hasAuthorship W4295308146A5018614212 @default.
- W4295308146 hasAuthorship W4295308146A5029041038 @default.
- W4295308146 hasAuthorship W4295308146A5033798632 @default.
- W4295308146 hasAuthorship W4295308146A5045957489 @default.
- W4295308146 hasAuthorship W4295308146A5054835201 @default.
- W4295308146 hasConcept C105795698 @default.
- W4295308146 hasConcept C106192678 @default.
- W4295308146 hasConcept C111919701 @default.
- W4295308146 hasConcept C11413529 @default.
- W4295308146 hasConcept C119857082 @default.
- W4295308146 hasConcept C120665830 @default.
- W4295308146 hasConcept C121332964 @default.
- W4295308146 hasConcept C124101348 @default.
- W4295308146 hasConcept C153180895 @default.
- W4295308146 hasConcept C154945302 @default.
- W4295308146 hasConcept C159985019 @default.
- W4295308146 hasConcept C165838908 @default.
- W4295308146 hasConcept C176864760 @default.
- W4295308146 hasConcept C178790620 @default.
- W4295308146 hasConcept C185592680 @default.
- W4295308146 hasConcept C186060115 @default.
- W4295308146 hasConcept C192562407 @default.
- W4295308146 hasConcept C2084832 @default.
- W4295308146 hasConcept C2776214188 @default.
- W4295308146 hasConcept C33923547 @default.
- W4295308146 hasConcept C41008148 @default.
- W4295308146 hasConcept C43571822 @default.
- W4295308146 hasConcept C86803240 @default.
- W4295308146 hasConcept C98045186 @default.
- W4295308146 hasConceptScore W4295308146C105795698 @default.
- W4295308146 hasConceptScore W4295308146C106192678 @default.
- W4295308146 hasConceptScore W4295308146C111919701 @default.
- W4295308146 hasConceptScore W4295308146C11413529 @default.
- W4295308146 hasConceptScore W4295308146C119857082 @default.
- W4295308146 hasConceptScore W4295308146C120665830 @default.
- W4295308146 hasConceptScore W4295308146C121332964 @default.
- W4295308146 hasConceptScore W4295308146C124101348 @default.
- W4295308146 hasConceptScore W4295308146C153180895 @default.
- W4295308146 hasConceptScore W4295308146C154945302 @default.
- W4295308146 hasConceptScore W4295308146C159985019 @default.
- W4295308146 hasConceptScore W4295308146C165838908 @default.
- W4295308146 hasConceptScore W4295308146C176864760 @default.
- W4295308146 hasConceptScore W4295308146C178790620 @default.
- W4295308146 hasConceptScore W4295308146C185592680 @default.
- W4295308146 hasConceptScore W4295308146C186060115 @default.
- W4295308146 hasConceptScore W4295308146C192562407 @default.
- W4295308146 hasConceptScore W4295308146C2084832 @default.
- W4295308146 hasConceptScore W4295308146C2776214188 @default.
- W4295308146 hasConceptScore W4295308146C33923547 @default.