Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295308158> ?p ?o ?g. }
- W4295308158 endingPage "11" @default.
- W4295308158 startingPage "1" @default.
- W4295308158 abstract "Electroencephalography (EEG)-based emotion recognition is crucial in the domain of Human-Computer Interaction (HCI), which gained significant attention in recent years. However, the non-stationarity and chaotic nature of the EEG signals pose challenges and restrict the state-of-the-art techniques from precisely identifying distinct emotional states from the EEG data and hence offer limited emotion recognition performance. To capture the underlying non-linear characteristics of EEG, this study employed a novel local mean decomposition (LMD) algorithm which decomposes EEG signals into product functions (PFs). Further PFs are modeled by Normal Inverse Gaussian (NIG) probability density function (PDF) parameters. Thus these PDF features are fed to an optimized Adaboost classifier developed with the help of a cross-validation approach. The novelty of the work lies in the NIG modeling of LMD domain PFs to identify specific emotions from the EEG signals. The significance of the NIG parameters is illustrated by qualitative, pictorial, and statistical analyses. To assess the efficiency of the proposed approach, intensive experiments are conducted on open-source datasets, SJTU Emotion EEG Dataset (SEED), SEED-IV, and Database for Emotion Analysis of Physiological Signals (DEAP). The emotion recognition performance is evaluated in terms of heat maps, receiver operating characteristics (ROC), and accuracy. The proposed emotion recognition system outperformed the state-of-art methods and achieved a maximum accuracy of 97.3%, 98%, and 98.6% with the cross-validation approach and 93.23%, 94.87%, and 95.58% for the cross-subject validation approach using DEAP and SEED, SEED-IV datasets, respectively." @default.
- W4295308158 created "2022-09-12" @default.
- W4295308158 creator A5004894915 @default.
- W4295308158 creator A5043924482 @default.
- W4295308158 creator A5082692383 @default.
- W4295308158 date "2022-01-01" @default.
- W4295308158 modified "2023-10-01" @default.
- W4295308158 title "Normal Inverse Gaussian Features for EEG-Based Automatic Emotion Recognition" @default.
- W4295308158 cites W1820534876 @default.
- W4295308158 cites W1930734808 @default.
- W4295308158 cites W1947251450 @default.
- W4295308158 cites W1963622639 @default.
- W4295308158 cites W1984424958 @default.
- W4295308158 cites W1988790447 @default.
- W4295308158 cites W2017844856 @default.
- W4295308158 cites W2020410973 @default.
- W4295308158 cites W2022270721 @default.
- W4295308158 cites W2023739715 @default.
- W4295308158 cites W2028586143 @default.
- W4295308158 cites W2066877763 @default.
- W4295308158 cites W2071843012 @default.
- W4295308158 cites W2090350213 @default.
- W4295308158 cites W2091648408 @default.
- W4295308158 cites W2092447967 @default.
- W4295308158 cites W2094789510 @default.
- W4295308158 cites W2100483895 @default.
- W4295308158 cites W2103184652 @default.
- W4295308158 cites W2103275652 @default.
- W4295308158 cites W2117645142 @default.
- W4295308158 cites W2140554090 @default.
- W4295308158 cites W2164699598 @default.
- W4295308158 cites W2294111736 @default.
- W4295308158 cites W2399868211 @default.
- W4295308158 cites W2467010667 @default.
- W4295308158 cites W2521265470 @default.
- W4295308158 cites W2792325177 @default.
- W4295308158 cites W2903462437 @default.
- W4295308158 cites W2993348073 @default.
- W4295308158 cites W3043308633 @default.
- W4295308158 cites W3081599307 @default.
- W4295308158 cites W3088256290 @default.
- W4295308158 cites W3114802091 @default.
- W4295308158 cites W3115745466 @default.
- W4295308158 cites W3156005160 @default.
- W4295308158 cites W3156356077 @default.
- W4295308158 cites W4206221039 @default.
- W4295308158 doi "https://doi.org/10.1109/tim.2022.3205894" @default.
- W4295308158 hasPublicationYear "2022" @default.
- W4295308158 type Work @default.
- W4295308158 citedByCount "5" @default.
- W4295308158 countsByYear W42953081582023 @default.
- W4295308158 crossrefType "journal-article" @default.
- W4295308158 hasAuthorship W4295308158A5004894915 @default.
- W4295308158 hasAuthorship W4295308158A5043924482 @default.
- W4295308158 hasAuthorship W4295308158A5082692383 @default.
- W4295308158 hasConcept C118552586 @default.
- W4295308158 hasConcept C119857082 @default.
- W4295308158 hasConcept C121332964 @default.
- W4295308158 hasConcept C12267149 @default.
- W4295308158 hasConcept C153180895 @default.
- W4295308158 hasConcept C154945302 @default.
- W4295308158 hasConcept C15744967 @default.
- W4295308158 hasConcept C163716315 @default.
- W4295308158 hasConcept C19118579 @default.
- W4295308158 hasConcept C28490314 @default.
- W4295308158 hasConcept C31972630 @default.
- W4295308158 hasConcept C41008148 @default.
- W4295308158 hasConcept C522805319 @default.
- W4295308158 hasConcept C52622490 @default.
- W4295308158 hasConcept C62520636 @default.
- W4295308158 hasConceptScore W4295308158C118552586 @default.
- W4295308158 hasConceptScore W4295308158C119857082 @default.
- W4295308158 hasConceptScore W4295308158C121332964 @default.
- W4295308158 hasConceptScore W4295308158C12267149 @default.
- W4295308158 hasConceptScore W4295308158C153180895 @default.
- W4295308158 hasConceptScore W4295308158C154945302 @default.
- W4295308158 hasConceptScore W4295308158C15744967 @default.
- W4295308158 hasConceptScore W4295308158C163716315 @default.
- W4295308158 hasConceptScore W4295308158C19118579 @default.
- W4295308158 hasConceptScore W4295308158C28490314 @default.
- W4295308158 hasConceptScore W4295308158C31972630 @default.
- W4295308158 hasConceptScore W4295308158C41008148 @default.
- W4295308158 hasConceptScore W4295308158C522805319 @default.
- W4295308158 hasConceptScore W4295308158C52622490 @default.
- W4295308158 hasConceptScore W4295308158C62520636 @default.
- W4295308158 hasLocation W42953081581 @default.
- W4295308158 hasOpenAccess W4295308158 @default.
- W4295308158 hasPrimaryLocation W42953081581 @default.
- W4295308158 hasRelatedWork W2041399278 @default.
- W4295308158 hasRelatedWork W2056016498 @default.
- W4295308158 hasRelatedWork W2136184105 @default.
- W4295308158 hasRelatedWork W2320736787 @default.
- W4295308158 hasRelatedWork W2336974148 @default.
- W4295308158 hasRelatedWork W2399116914 @default.
- W4295308158 hasRelatedWork W2811390910 @default.
- W4295308158 hasRelatedWork W3013515612 @default.
- W4295308158 hasRelatedWork W2187500075 @default.
- W4295308158 hasRelatedWork W2345184372 @default.