Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295308277> ?p ?o ?g. }
- W4295308277 endingPage "100" @default.
- W4295308277 startingPage "77" @default.
- W4295308277 abstract "Machine learning (ML) provides effective means to learn from spectrum data and solve complex tasks involved in wireless communications. Supported by recent advances in computational resources and algorithmic designs, deep learning (DL) has found success in performing various wireless communication tasks such as signal recognition, spectrum sensing and waveform design. However, ML in general and DL in particular have been found vulnerable to manipulations thus giving rise to a field of study called adversarial machine learning (AML). Although AML has been extensively studied in other data domains such as computer vision and natural language processing, research for AML in the wireless communications domain is still in its early stage. This paper presents a comprehensive review of the latest research efforts focused on AML in wireless communications while accounting for the unique characteristics of wireless systems. First, the background of AML attacks on deep neural networks is discussed and a taxonomy of AML attack types is provided. Various methods of generating adversarial examples and attack mechanisms are also described. In addition, an holistic survey of existing research on AML attacks for various wireless communication problems as well as the corresponding defense mechanisms in the wireless domain are presented. Finally, as new attacks and defense techniques are developed, recent research trends and the overarching future outlook for AML in next-generation wireless communications are discussed." @default.
- W4295308277 created "2022-09-12" @default.
- W4295308277 creator A5002816813 @default.
- W4295308277 creator A5046282905 @default.
- W4295308277 creator A5085031765 @default.
- W4295308277 creator A5089570143 @default.
- W4295308277 date "2023-01-01" @default.
- W4295308277 modified "2023-10-05" @default.
- W4295308277 title "Adversarial Machine Learning in Wireless Communications Using RF Data: A Review" @default.
- W4295308277 cites W2000804537 @default.
- W4295308277 cites W2005956500 @default.
- W4295308277 cites W2055449819 @default.
- W4295308277 cites W2072079297 @default.
- W4295308277 cites W2095577883 @default.
- W4295308277 cites W2124280970 @default.
- W4295308277 cites W2132814903 @default.
- W4295308277 cites W2140288896 @default.
- W4295308277 cites W2148041126 @default.
- W4295308277 cites W2151298633 @default.
- W4295308277 cites W2189431159 @default.
- W4295308277 cites W2261527505 @default.
- W4295308277 cites W2272847350 @default.
- W4295308277 cites W2543927648 @default.
- W4295308277 cites W2562947506 @default.
- W4295308277 cites W2563254982 @default.
- W4295308277 cites W2599116359 @default.
- W4295308277 cites W2602034649 @default.
- W4295308277 cites W2603766943 @default.
- W4295308277 cites W2604249033 @default.
- W4295308277 cites W2609368435 @default.
- W4295308277 cites W2610603914 @default.
- W4295308277 cites W2623427976 @default.
- W4295308277 cites W2625625371 @default.
- W4295308277 cites W2735414743 @default.
- W4295308277 cites W2735793369 @default.
- W4295308277 cites W2736402963 @default.
- W4295308277 cites W2741401130 @default.
- W4295308277 cites W2743856420 @default.
- W4295308277 cites W2753002651 @default.
- W4295308277 cites W2761800654 @default.
- W4295308277 cites W2773170971 @default.
- W4295308277 cites W2773459750 @default.
- W4295308277 cites W2774644650 @default.
- W4295308277 cites W2775383661 @default.
- W4295308277 cites W2779618876 @default.
- W4295308277 cites W2791256362 @default.
- W4295308277 cites W2791279818 @default.
- W4295308277 cites W2791319131 @default.
- W4295308277 cites W2794284562 @default.
- W4295308277 cites W2799194071 @default.
- W4295308277 cites W2799390666 @default.
- W4295308277 cites W2800244495 @default.
- W4295308277 cites W2803831897 @default.
- W4295308277 cites W2809619574 @default.
- W4295308277 cites W2853090665 @default.
- W4295308277 cites W2875475762 @default.
- W4295308277 cites W2884089434 @default.
- W4295308277 cites W2885033069 @default.
- W4295308277 cites W2885141472 @default.
- W4295308277 cites W2886189420 @default.
- W4295308277 cites W2887286578 @default.
- W4295308277 cites W2888024549 @default.
- W4295308277 cites W2891797126 @default.
- W4295308277 cites W2893903145 @default.
- W4295308277 cites W2897313686 @default.
- W4295308277 cites W2902952649 @default.
- W4295308277 cites W2904843110 @default.
- W4295308277 cites W2907201671 @default.
- W4295308277 cites W2907410281 @default.
- W4295308277 cites W2907930484 @default.
- W4295308277 cites W2908195603 @default.
- W4295308277 cites W2908923193 @default.
- W4295308277 cites W2908993293 @default.
- W4295308277 cites W2913608505 @default.
- W4295308277 cites W2914940294 @default.
- W4295308277 cites W2917485473 @default.
- W4295308277 cites W2918677731 @default.
- W4295308277 cites W2921861522 @default.
- W4295308277 cites W2922701384 @default.
- W4295308277 cites W2930249865 @default.
- W4295308277 cites W2934843808 @default.
- W4295308277 cites W2935703330 @default.
- W4295308277 cites W2936009584 @default.
- W4295308277 cites W2939757977 @default.
- W4295308277 cites W2944248482 @default.
- W4295308277 cites W2944313727 @default.
- W4295308277 cites W2945449007 @default.
- W4295308277 cites W2945528624 @default.
- W4295308277 cites W2946245082 @default.
- W4295308277 cites W2946313841 @default.
- W4295308277 cites W2950863887 @default.
- W4295308277 cites W2955338161 @default.
- W4295308277 cites W2962700793 @default.
- W4295308277 cites W2962780374 @default.
- W4295308277 cites W2963047971 @default.
- W4295308277 cites W2963079272 @default.
- W4295308277 cites W2963126845 @default.
- W4295308277 cites W2963162645 @default.