Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295308286> ?p ?o ?g. }
- W4295308286 endingPage "1249" @default.
- W4295308286 startingPage "1235" @default.
- W4295308286 abstract "In this paper, we consider spectrum sensing (SS) problems with various general noise models such as Middleton class A (MCA), isometric complex symmetric <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$alpha $ </tex-math></inline-formula> -stable ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text{S}alpha text{S}$ </tex-math></inline-formula> ), and isometric complex generalized Gaussian distribution (CGGD). This approach enables us to examine the effect of practical phenomena such as impulsive noise on SS problems. In this general framework, we propose a detector based on convolutional neural networks (CNNs) with favorable performance under various noise models. The proposed model-free and data-driven CNN offers robustness in diverse noise scenarios. Thus, it can be utilized in environments with different physical behaviors. We demonstrate this method outperforms the highly regarded likelihood ratio test (LRT) in most cases. For all impulsive cases, the proposed CNN is the superior detector, providing a near-optimum performance for the conventional Gaussian noise. We indicate the proposed data-driven CNN offers an appropriate alternative solution to LRT. However, it requires more computational operations, a rich training dataset, and a training process, instead. Furthermore, the main rationale for proposing this CNN is that it enables the network to generalize its effective performance to various noise models and cases. To this end, quantitative simulations confirm superiority of the proposed CNN compared to other recent deep-learning methods." @default.
- W4295308286 created "2022-09-12" @default.
- W4295308286 creator A5024263102 @default.
- W4295308286 creator A5035446029 @default.
- W4295308286 creator A5087253944 @default.
- W4295308286 date "2023-02-01" @default.
- W4295308286 modified "2023-10-05" @default.
- W4295308286 title "CNN-Based Detector for Spectrum Sensing With General Noise Models" @default.
- W4295308286 cites W1665036618 @default.
- W4295308286 cites W1978189606 @default.
- W4295308286 cites W2022894179 @default.
- W4295308286 cites W2030877763 @default.
- W4295308286 cites W2080304931 @default.
- W4295308286 cites W2092431085 @default.
- W4295308286 cites W2101840010 @default.
- W4295308286 cites W2104169127 @default.
- W4295308286 cites W2112927832 @default.
- W4295308286 cites W2118020278 @default.
- W4295308286 cites W2122274174 @default.
- W4295308286 cites W2128500088 @default.
- W4295308286 cites W2130520930 @default.
- W4295308286 cites W2136166406 @default.
- W4295308286 cites W2140638323 @default.
- W4295308286 cites W2150767133 @default.
- W4295308286 cites W2165155912 @default.
- W4295308286 cites W2165641461 @default.
- W4295308286 cites W2170692378 @default.
- W4295308286 cites W2171402290 @default.
- W4295308286 cites W2171998198 @default.
- W4295308286 cites W2398781343 @default.
- W4295308286 cites W2542873829 @default.
- W4295308286 cites W2551956255 @default.
- W4295308286 cites W2560581079 @default.
- W4295308286 cites W2786168957 @default.
- W4295308286 cites W2808781466 @default.
- W4295308286 cites W2908993293 @default.
- W4295308286 cites W2914675894 @default.
- W4295308286 cites W2922953676 @default.
- W4295308286 cites W2923193997 @default.
- W4295308286 cites W2925083964 @default.
- W4295308286 cites W2944313727 @default.
- W4295308286 cites W2949898923 @default.
- W4295308286 cites W2961738463 @default.
- W4295308286 cites W2966910701 @default.
- W4295308286 cites W2972344074 @default.
- W4295308286 cites W3027109963 @default.
- W4295308286 cites W3096423797 @default.
- W4295308286 cites W3150752166 @default.
- W4295308286 cites W3161873998 @default.
- W4295308286 doi "https://doi.org/10.1109/twc.2022.3203732" @default.
- W4295308286 hasPublicationYear "2023" @default.
- W4295308286 type Work @default.
- W4295308286 citedByCount "4" @default.
- W4295308286 countsByYear W42953082862022 @default.
- W4295308286 countsByYear W42953082862023 @default.
- W4295308286 crossrefType "journal-article" @default.
- W4295308286 hasAuthorship W4295308286A5024263102 @default.
- W4295308286 hasAuthorship W4295308286A5035446029 @default.
- W4295308286 hasAuthorship W4295308286A5087253944 @default.
- W4295308286 hasConcept C104317684 @default.
- W4295308286 hasConcept C11413529 @default.
- W4295308286 hasConcept C115961682 @default.
- W4295308286 hasConcept C121332964 @default.
- W4295308286 hasConcept C154945302 @default.
- W4295308286 hasConcept C163716315 @default.
- W4295308286 hasConcept C185592680 @default.
- W4295308286 hasConcept C33923547 @default.
- W4295308286 hasConcept C41008148 @default.
- W4295308286 hasConcept C4199805 @default.
- W4295308286 hasConcept C45357846 @default.
- W4295308286 hasConcept C55493867 @default.
- W4295308286 hasConcept C62520636 @default.
- W4295308286 hasConcept C63479239 @default.
- W4295308286 hasConcept C76155785 @default.
- W4295308286 hasConcept C81363708 @default.
- W4295308286 hasConcept C94375191 @default.
- W4295308286 hasConcept C94915269 @default.
- W4295308286 hasConcept C99498987 @default.
- W4295308286 hasConceptScore W4295308286C104317684 @default.
- W4295308286 hasConceptScore W4295308286C11413529 @default.
- W4295308286 hasConceptScore W4295308286C115961682 @default.
- W4295308286 hasConceptScore W4295308286C121332964 @default.
- W4295308286 hasConceptScore W4295308286C154945302 @default.
- W4295308286 hasConceptScore W4295308286C163716315 @default.
- W4295308286 hasConceptScore W4295308286C185592680 @default.
- W4295308286 hasConceptScore W4295308286C33923547 @default.
- W4295308286 hasConceptScore W4295308286C41008148 @default.
- W4295308286 hasConceptScore W4295308286C4199805 @default.
- W4295308286 hasConceptScore W4295308286C45357846 @default.
- W4295308286 hasConceptScore W4295308286C55493867 @default.
- W4295308286 hasConceptScore W4295308286C62520636 @default.
- W4295308286 hasConceptScore W4295308286C63479239 @default.
- W4295308286 hasConceptScore W4295308286C76155785 @default.
- W4295308286 hasConceptScore W4295308286C81363708 @default.
- W4295308286 hasConceptScore W4295308286C94375191 @default.
- W4295308286 hasConceptScore W4295308286C94915269 @default.
- W4295308286 hasConceptScore W4295308286C99498987 @default.
- W4295308286 hasIssue "2" @default.