Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295308427> ?p ?o ?g. }
- W4295308427 endingPage "96513" @default.
- W4295308427 startingPage "96492" @default.
- W4295308427 abstract "In recent years, with the advent of highly scalable artificial-neural-network-based text representation methods the field of natural language processing has seen unprecedented growth and sophistication. It has become possible to distill complex linguistic information of text into multidimensional dense numeric vectors with the use of the distributional hypothesis. As a consequence, text representation methods have been evolving at such a quick pace that the research community is struggling to retain knowledge of the methods and their interrelations. We contribute threefold to this lack of compilation, composition, and systematization by providing a survey of current approaches, by arranging them in a genealogy, and by conceptualizing a taxonomy of text representation methods to examine and explain the state-of-the-art. Our research is a valuable guide and reference for artificial intelligence researchers and practitioners interested in natural language processing applications such as recommender systems, chatbots, and sentiment analysis." @default.
- W4295308427 created "2022-09-12" @default.
- W4295308427 creator A5029093687 @default.
- W4295308427 creator A5045400933 @default.
- W4295308427 creator A5048865769 @default.
- W4295308427 date "2022-01-01" @default.
- W4295308427 modified "2023-10-16" @default.
- W4295308427 title "A Survey of Text Representation Methods and Their Genealogy" @default.
- W4295308427 cites W101492982 @default.
- W4295308427 cites W1498763386 @default.
- W4295308427 cites W175588260 @default.
- W4295308427 cites W2028140375 @default.
- W4295308427 cites W2064675550 @default.
- W4295308427 cites W2085230034 @default.
- W4295308427 cites W2157331557 @default.
- W4295308427 cites W2161336914 @default.
- W4295308427 cites W2250539671 @default.
- W4295308427 cites W2417763662 @default.
- W4295308427 cites W2482610892 @default.
- W4295308427 cites W2507974895 @default.
- W4295308427 cites W2519666331 @default.
- W4295308427 cites W2606089314 @default.
- W4295308427 cites W2751627669 @default.
- W4295308427 cites W2758506174 @default.
- W4295308427 cites W2882319491 @default.
- W4295308427 cites W2884001105 @default.
- W4295308427 cites W2885806305 @default.
- W4295308427 cites W2891177506 @default.
- W4295308427 cites W2962739339 @default.
- W4295308427 cites W2963026768 @default.
- W4295308427 cites W2963850840 @default.
- W4295308427 cites W2963854351 @default.
- W4295308427 cites W2964110616 @default.
- W4295308427 cites W2988533489 @default.
- W4295308427 cites W2997200074 @default.
- W4295308427 cites W2999089077 @default.
- W4295308427 cites W3007595536 @default.
- W4295308427 cites W3011411500 @default.
- W4295308427 cites W3011868720 @default.
- W4295308427 cites W3015001695 @default.
- W4295308427 cites W3019166713 @default.
- W4295308427 cites W3031696893 @default.
- W4295308427 cites W3100439847 @default.
- W4295308427 cites W3104415840 @default.
- W4295308427 cites W3105878265 @default.
- W4295308427 cites W3110623878 @default.
- W4295308427 cites W3129831491 @default.
- W4295308427 cites W3135427360 @default.
- W4295308427 cites W3151929433 @default.
- W4295308427 cites W3155739706 @default.
- W4295308427 cites W3198659451 @default.
- W4295308427 cites W4210473988 @default.
- W4295308427 cites W4226418765 @default.
- W4295308427 cites W4241397279 @default.
- W4295308427 doi "https://doi.org/10.1109/access.2022.3205719" @default.
- W4295308427 hasPublicationYear "2022" @default.
- W4295308427 type Work @default.
- W4295308427 citedByCount "2" @default.
- W4295308427 countsByYear W42953084272023 @default.
- W4295308427 crossrefType "journal-article" @default.
- W4295308427 hasAuthorship W4295308427A5029093687 @default.
- W4295308427 hasAuthorship W4295308427A5045400933 @default.
- W4295308427 hasAuthorship W4295308427A5048865769 @default.
- W4295308427 hasBestOaLocation W42953084271 @default.
- W4295308427 hasConcept C13280743 @default.
- W4295308427 hasConcept C144024400 @default.
- W4295308427 hasConcept C154945302 @default.
- W4295308427 hasConcept C168725872 @default.
- W4295308427 hasConcept C17744445 @default.
- W4295308427 hasConcept C195324797 @default.
- W4295308427 hasConcept C199539241 @default.
- W4295308427 hasConcept C202444582 @default.
- W4295308427 hasConcept C204321447 @default.
- W4295308427 hasConcept C205649164 @default.
- W4295308427 hasConcept C23123220 @default.
- W4295308427 hasConcept C2522767166 @default.
- W4295308427 hasConcept C2776359362 @default.
- W4295308427 hasConcept C2777526511 @default.
- W4295308427 hasConcept C2779500292 @default.
- W4295308427 hasConcept C33923547 @default.
- W4295308427 hasConcept C36289849 @default.
- W4295308427 hasConcept C41008148 @default.
- W4295308427 hasConcept C58642233 @default.
- W4295308427 hasConcept C59822182 @default.
- W4295308427 hasConcept C86803240 @default.
- W4295308427 hasConcept C94625758 @default.
- W4295308427 hasConcept C9652623 @default.
- W4295308427 hasConceptScore W4295308427C13280743 @default.
- W4295308427 hasConceptScore W4295308427C144024400 @default.
- W4295308427 hasConceptScore W4295308427C154945302 @default.
- W4295308427 hasConceptScore W4295308427C168725872 @default.
- W4295308427 hasConceptScore W4295308427C17744445 @default.
- W4295308427 hasConceptScore W4295308427C195324797 @default.
- W4295308427 hasConceptScore W4295308427C199539241 @default.
- W4295308427 hasConceptScore W4295308427C202444582 @default.
- W4295308427 hasConceptScore W4295308427C204321447 @default.
- W4295308427 hasConceptScore W4295308427C205649164 @default.
- W4295308427 hasConceptScore W4295308427C23123220 @default.