Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295308778> ?p ?o ?g. }
- W4295308778 abstract "The highly beneficial contribution of intelligent systems in the industrial domain is undeniable. Automation, supervision, remote control, and fault reduction are some of the various advantages new technologies offer. A protocol demonstrating high utility in industrial settings, and specifically, in smart grids, is Distributed Network Protocol 3 (DNP3), a multi-tier, application layer protocol. Notably, multiple industrial protocols are not as securely designed as expected, considering the highly critical operations occurring in their application domain. In this paper, we explore the internal vulnerabilities-by-design of DNP3, and proceed with the implementation of the attacks discovered, demonstrated through 8 DNP3 attack scenarios. Finally, we design and demonstrate a Deep Neural Network (DNN)-based, multi-model Intrusion Detection Systems (IDS), trained with our experimental network flow cyberattack dataset, and compare our solution with multiple machine learning algorithms used for classification. Our solution demonstrates a high efficiency in the classification of DNP3 cyberattacks, showing an accuracy of 99.0%." @default.
- W4295308778 created "2022-09-12" @default.
- W4295308778 creator A5018982067 @default.
- W4295308778 creator A5025891312 @default.
- W4295308778 creator A5032652318 @default.
- W4295308778 creator A5040064678 @default.
- W4295308778 creator A5049260995 @default.
- W4295308778 creator A5050756789 @default.
- W4295308778 creator A5066475089 @default.
- W4295308778 creator A5087629849 @default.
- W4295308778 date "2022-05-01" @default.
- W4295308778 modified "2023-10-02" @default.
- W4295308778 title "Attacking and Defending DNP3 ICS/SCADA Systems" @default.
- W4295308778 cites W1546161534 @default.
- W4295308778 cites W1793953003 @default.
- W4295308778 cites W2024094925 @default.
- W4295308778 cites W2039427951 @default.
- W4295308778 cites W2082839525 @default.
- W4295308778 cites W2142993476 @default.
- W4295308778 cites W2244582324 @default.
- W4295308778 cites W2473954534 @default.
- W4295308778 cites W2537726958 @default.
- W4295308778 cites W2670040239 @default.
- W4295308778 cites W2910385575 @default.
- W4295308778 cites W2963082174 @default.
- W4295308778 cites W2991140181 @default.
- W4295308778 cites W2997065203 @default.
- W4295308778 cites W3072042784 @default.
- W4295308778 cites W3080157478 @default.
- W4295308778 cites W3092446291 @default.
- W4295308778 cites W3098072737 @default.
- W4295308778 cites W3119207006 @default.
- W4295308778 cites W3134198929 @default.
- W4295308778 cites W3136765649 @default.
- W4295308778 cites W3147914029 @default.
- W4295308778 cites W3155081803 @default.
- W4295308778 cites W3191798350 @default.
- W4295308778 cites W3197863687 @default.
- W4295308778 cites W3207009612 @default.
- W4295308778 cites W3210912224 @default.
- W4295308778 cites W3217331049 @default.
- W4295308778 cites W4200072308 @default.
- W4295308778 cites W4200162376 @default.
- W4295308778 cites W4205284646 @default.
- W4295308778 cites W4205419145 @default.
- W4295308778 cites W4236863264 @default.
- W4295308778 doi "https://doi.org/10.1109/dcoss54816.2022.00041" @default.
- W4295308778 hasPublicationYear "2022" @default.
- W4295308778 type Work @default.
- W4295308778 citedByCount "3" @default.
- W4295308778 countsByYear W42953087782022 @default.
- W4295308778 countsByYear W42953087782023 @default.
- W4295308778 crossrefType "proceedings-article" @default.
- W4295308778 hasAuthorship W4295308778A5018982067 @default.
- W4295308778 hasAuthorship W4295308778A5025891312 @default.
- W4295308778 hasAuthorship W4295308778A5032652318 @default.
- W4295308778 hasAuthorship W4295308778A5040064678 @default.
- W4295308778 hasAuthorship W4295308778A5049260995 @default.
- W4295308778 hasAuthorship W4295308778A5050756789 @default.
- W4295308778 hasAuthorship W4295308778A5066475089 @default.
- W4295308778 hasAuthorship W4295308778A5087629849 @default.
- W4295308778 hasBestOaLocation W42953087782 @default.
- W4295308778 hasConcept C113863187 @default.
- W4295308778 hasConcept C115901376 @default.
- W4295308778 hasConcept C119599485 @default.
- W4295308778 hasConcept C120314980 @default.
- W4295308778 hasConcept C127413603 @default.
- W4295308778 hasConcept C134306372 @default.
- W4295308778 hasConcept C142724271 @default.
- W4295308778 hasConcept C149635348 @default.
- W4295308778 hasConcept C154945302 @default.
- W4295308778 hasConcept C204787440 @default.
- W4295308778 hasConcept C2775924081 @default.
- W4295308778 hasConcept C2778907243 @default.
- W4295308778 hasConcept C2780385302 @default.
- W4295308778 hasConcept C31258907 @default.
- W4295308778 hasConcept C33923547 @default.
- W4295308778 hasConcept C35525427 @default.
- W4295308778 hasConcept C36503486 @default.
- W4295308778 hasConcept C40071531 @default.
- W4295308778 hasConcept C41008148 @default.
- W4295308778 hasConcept C71924100 @default.
- W4295308778 hasConcept C78519656 @default.
- W4295308778 hasConceptScore W4295308778C113863187 @default.
- W4295308778 hasConceptScore W4295308778C115901376 @default.
- W4295308778 hasConceptScore W4295308778C119599485 @default.
- W4295308778 hasConceptScore W4295308778C120314980 @default.
- W4295308778 hasConceptScore W4295308778C127413603 @default.
- W4295308778 hasConceptScore W4295308778C134306372 @default.
- W4295308778 hasConceptScore W4295308778C142724271 @default.
- W4295308778 hasConceptScore W4295308778C149635348 @default.
- W4295308778 hasConceptScore W4295308778C154945302 @default.
- W4295308778 hasConceptScore W4295308778C204787440 @default.
- W4295308778 hasConceptScore W4295308778C2775924081 @default.
- W4295308778 hasConceptScore W4295308778C2778907243 @default.
- W4295308778 hasConceptScore W4295308778C2780385302 @default.
- W4295308778 hasConceptScore W4295308778C31258907 @default.
- W4295308778 hasConceptScore W4295308778C33923547 @default.
- W4295308778 hasConceptScore W4295308778C35525427 @default.
- W4295308778 hasConceptScore W4295308778C36503486 @default.