Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295331985> ?p ?o ?g. }
- W4295331985 endingPage "125679" @default.
- W4295331985 startingPage "125679" @default.
- W4295331985 abstract "165 crude oils with viscosity, density, and molecular weight variation in the range 0.54 – 24135cP; 0.746 – 1.016 g/cm3; 117–579 g/mol respectively were examined for viscosity prediction using eight available in the literature models and three more, developed in this work models. The best empirical model was that of Sinha et al., 2020 with % AAD (absolute average deviation) = 18.2 %, The ANN (artificial neural network) model for the data set of the 165 crude oils outperformed the empirical correlations with % AAD = 17.7 %. 93 crude oils with viscosity, density, molecular weight, and SARA composition data variation in the range 2.3 – 23 000cP; 0.819 – 0.992 g/cm3; 179–579 g/mol; Sat.: 26.0–79.3 %; Aro:11.9–52.8 %; Res.: 2.5–30.9; Asp.:0.1–19.6 % respectively were also examined for viscosity prediction by the available in the literature empirical correlations and another new developed empirical correlation that includes besides molecular weight and density, the crude oil saturate content. The best empirical model was that developed in this work with saturate content inclusion, that showed % AAD = 23.8 %. The ANN model for the data set of 93 crude oils again outperformed the empirical correlations with % AAD = 18.8 %. The most accurate model predicting viscosity was found the new developed in this work model on the base of a reference viscosity at a particular temperature and molecular weight with %AAD = 2.5 %." @default.
- W4295331985 created "2022-09-13" @default.
- W4295331985 creator A5006086824 @default.
- W4295331985 creator A5008299688 @default.
- W4295331985 creator A5019081739 @default.
- W4295331985 creator A5032673923 @default.
- W4295331985 creator A5037075751 @default.
- W4295331985 creator A5038199341 @default.
- W4295331985 creator A5041209985 @default.
- W4295331985 creator A5052720227 @default.
- W4295331985 creator A5055593801 @default.
- W4295331985 creator A5055977923 @default.
- W4295331985 creator A5067929929 @default.
- W4295331985 creator A5077811803 @default.
- W4295331985 date "2023-01-01" @default.
- W4295331985 modified "2023-10-16" @default.
- W4295331985 title "Prediction of petroleum viscosity from molecular weight and density" @default.
- W4295331985 cites W1130301991 @default.
- W4295331985 cites W1603653036 @default.
- W4295331985 cites W1977898011 @default.
- W4295331985 cites W1980946281 @default.
- W4295331985 cites W1989565156 @default.
- W4295331985 cites W1991817691 @default.
- W4295331985 cites W2003377058 @default.
- W4295331985 cites W2012958947 @default.
- W4295331985 cites W2014074196 @default.
- W4295331985 cites W2019524948 @default.
- W4295331985 cites W2023213690 @default.
- W4295331985 cites W2028711207 @default.
- W4295331985 cites W2030939869 @default.
- W4295331985 cites W2037418472 @default.
- W4295331985 cites W2040128150 @default.
- W4295331985 cites W2040335570 @default.
- W4295331985 cites W2047779369 @default.
- W4295331985 cites W2051005939 @default.
- W4295331985 cites W2053837016 @default.
- W4295331985 cites W2055934589 @default.
- W4295331985 cites W2060045078 @default.
- W4295331985 cites W2078813801 @default.
- W4295331985 cites W2096552603 @default.
- W4295331985 cites W2108153918 @default.
- W4295331985 cites W2274400296 @default.
- W4295331985 cites W2313036867 @default.
- W4295331985 cites W2316099226 @default.
- W4295331985 cites W2397196681 @default.
- W4295331985 cites W2473709877 @default.
- W4295331985 cites W2477125077 @default.
- W4295331985 cites W2510290207 @default.
- W4295331985 cites W2522239112 @default.
- W4295331985 cites W2529994145 @default.
- W4295331985 cites W2623094841 @default.
- W4295331985 cites W2752244881 @default.
- W4295331985 cites W2784929592 @default.
- W4295331985 cites W2792359439 @default.
- W4295331985 cites W2896916344 @default.
- W4295331985 cites W2897596811 @default.
- W4295331985 cites W2922071703 @default.
- W4295331985 cites W2924077427 @default.
- W4295331985 cites W3013652602 @default.
- W4295331985 cites W3024665538 @default.
- W4295331985 cites W3040627424 @default.
- W4295331985 cites W3056567276 @default.
- W4295331985 cites W3088623057 @default.
- W4295331985 cites W3111343184 @default.
- W4295331985 cites W3126177434 @default.
- W4295331985 cites W3150558786 @default.
- W4295331985 cites W3168925748 @default.
- W4295331985 cites W3204847745 @default.
- W4295331985 cites W3208009115 @default.
- W4295331985 cites W4213450668 @default.
- W4295331985 cites W4226061694 @default.
- W4295331985 doi "https://doi.org/10.1016/j.fuel.2022.125679" @default.
- W4295331985 hasPublicationYear "2023" @default.
- W4295331985 type Work @default.
- W4295331985 citedByCount "11" @default.
- W4295331985 countsByYear W42953319852022 @default.
- W4295331985 countsByYear W42953319852023 @default.
- W4295331985 crossrefType "journal-article" @default.
- W4295331985 hasAuthorship W4295331985A5006086824 @default.
- W4295331985 hasAuthorship W4295331985A5008299688 @default.
- W4295331985 hasAuthorship W4295331985A5019081739 @default.
- W4295331985 hasAuthorship W4295331985A5032673923 @default.
- W4295331985 hasAuthorship W4295331985A5037075751 @default.
- W4295331985 hasAuthorship W4295331985A5038199341 @default.
- W4295331985 hasAuthorship W4295331985A5041209985 @default.
- W4295331985 hasAuthorship W4295331985A5052720227 @default.
- W4295331985 hasAuthorship W4295331985A5055593801 @default.
- W4295331985 hasAuthorship W4295331985A5055977923 @default.
- W4295331985 hasAuthorship W4295331985A5067929929 @default.
- W4295331985 hasAuthorship W4295331985A5077811803 @default.
- W4295331985 hasConcept C105795698 @default.
- W4295331985 hasConcept C113196181 @default.
- W4295331985 hasConcept C120934525 @default.
- W4295331985 hasConcept C121332964 @default.
- W4295331985 hasConcept C127172972 @default.
- W4295331985 hasConcept C127413603 @default.
- W4295331985 hasConcept C133199616 @default.
- W4295331985 hasConcept C185592680 @default.