Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295359093> ?p ?o ?g. }
- W4295359093 abstract "One of the thrust areas of research in plant breeding is to develop crop cultivars with enhanced tolerance to abiotic stresses. Thus, identifying abiotic stress-responsive genes (SRGs) and proteins is important for plant breeding research. However, identifying such genes via established genetic approaches is laborious and resource intensive. Although transcriptome profiling has remained a reliable method of SRG identification, it is species specific. Additionally, identifying multistress responsive genes using gene expression studies is cumbersome. Thus, endorsing the need to develop a computational method for identifying the genes associated with different abiotic stresses. In this work, we aimed to develop a computational model for identifying genes responsive to six abiotic stresses: cold, drought, heat, light, oxidative, and salt. The predictions were performed using support vector machine (SVM), random forest, adaptive boosting (ADB), and extreme gradient boosting (XGB), where the autocross covariance (ACC) and K-mer compositional features were used as input. With ACC, K-mer, and ACC + K-mer compositional features, the overall accuracy of ∼60-77, ∼75-86, and ∼61-78% were respectively obtained using the SVM algorithm with fivefold cross-validation. The SVM also achieved higher accuracy than the other three algorithms. The proposed model was also assessed with an independent dataset and obtained an accuracy consistent with cross-validation. The proposed model is the first of its kind and is expected to serve the requirement of experimental biologists; however, the prediction accuracy was modest. Given its importance for the research community, the online prediction application, ASRpro, is made freely available (https://iasri-sg.icar.gov.in/asrpro/) for predicting abiotic SRGs and proteins." @default.
- W4295359093 created "2022-09-13" @default.
- W4295359093 creator A5003501176 @default.
- W4295359093 creator A5024087307 @default.
- W4295359093 creator A5029969116 @default.
- W4295359093 creator A5031419872 @default.
- W4295359093 creator A5039948033 @default.
- W4295359093 date "2022-09-13" @default.
- W4295359093 modified "2023-10-17" @default.
- W4295359093 title "ASRpro: A machine‐learning computational model for identifying proteins associated with multiple abiotic stress in plants" @default.
- W4295359093 cites W1420039358 @default.
- W4295359093 cites W1888240884 @default.
- W4295359093 cites W1972675532 @default.
- W4295359093 cites W1973424926 @default.
- W4295359093 cites W1976133477 @default.
- W4295359093 cites W1976526581 @default.
- W4295359093 cites W2026976781 @default.
- W4295359093 cites W2029579605 @default.
- W4295359093 cites W2034431584 @default.
- W4295359093 cites W2048272804 @default.
- W4295359093 cites W2104634417 @default.
- W4295359093 cites W2114498896 @default.
- W4295359093 cites W2116808860 @default.
- W4295359093 cites W2119331235 @default.
- W4295359093 cites W2122563335 @default.
- W4295359093 cites W2122605620 @default.
- W4295359093 cites W2125224183 @default.
- W4295359093 cites W2131105131 @default.
- W4295359093 cites W2143426320 @default.
- W4295359093 cites W2144041638 @default.
- W4295359093 cites W2167977334 @default.
- W4295359093 cites W2170747616 @default.
- W4295359093 cites W2171393437 @default.
- W4295359093 cites W2337731955 @default.
- W4295359093 cites W2499381257 @default.
- W4295359093 cites W2527891094 @default.
- W4295359093 cites W2585956084 @default.
- W4295359093 cites W2607378088 @default.
- W4295359093 cites W2608515611 @default.
- W4295359093 cites W2783296607 @default.
- W4295359093 cites W2793723688 @default.
- W4295359093 cites W2911964244 @default.
- W4295359093 cites W3014976078 @default.
- W4295359093 cites W3102476541 @default.
- W4295359093 cites W376961572 @default.
- W4295359093 cites W4239510810 @default.
- W4295359093 doi "https://doi.org/10.1002/tpg2.20259" @default.
- W4295359093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36098562" @default.
- W4295359093 hasPublicationYear "2022" @default.
- W4295359093 type Work @default.
- W4295359093 citedByCount "0" @default.
- W4295359093 crossrefType "journal-article" @default.
- W4295359093 hasAuthorship W4295359093A5003501176 @default.
- W4295359093 hasAuthorship W4295359093A5024087307 @default.
- W4295359093 hasAuthorship W4295359093A5029969116 @default.
- W4295359093 hasAuthorship W4295359093A5031419872 @default.
- W4295359093 hasAuthorship W4295359093A5039948033 @default.
- W4295359093 hasBestOaLocation W42953590931 @default.
- W4295359093 hasConcept C104317684 @default.
- W4295359093 hasConcept C116834253 @default.
- W4295359093 hasConcept C119857082 @default.
- W4295359093 hasConcept C12267149 @default.
- W4295359093 hasConcept C132215390 @default.
- W4295359093 hasConcept C154945302 @default.
- W4295359093 hasConcept C169258074 @default.
- W4295359093 hasConcept C18903297 @default.
- W4295359093 hasConcept C41008148 @default.
- W4295359093 hasConcept C54355233 @default.
- W4295359093 hasConcept C70721500 @default.
- W4295359093 hasConcept C86803240 @default.
- W4295359093 hasConcept C89519541 @default.
- W4295359093 hasConceptScore W4295359093C104317684 @default.
- W4295359093 hasConceptScore W4295359093C116834253 @default.
- W4295359093 hasConceptScore W4295359093C119857082 @default.
- W4295359093 hasConceptScore W4295359093C12267149 @default.
- W4295359093 hasConceptScore W4295359093C132215390 @default.
- W4295359093 hasConceptScore W4295359093C154945302 @default.
- W4295359093 hasConceptScore W4295359093C169258074 @default.
- W4295359093 hasConceptScore W4295359093C18903297 @default.
- W4295359093 hasConceptScore W4295359093C41008148 @default.
- W4295359093 hasConceptScore W4295359093C54355233 @default.
- W4295359093 hasConceptScore W4295359093C70721500 @default.
- W4295359093 hasConceptScore W4295359093C86803240 @default.
- W4295359093 hasConceptScore W4295359093C89519541 @default.
- W4295359093 hasLocation W42953590931 @default.
- W4295359093 hasLocation W42953590932 @default.
- W4295359093 hasOpenAccess W4295359093 @default.
- W4295359093 hasPrimaryLocation W42953590931 @default.
- W4295359093 hasRelatedWork W2008091757 @default.
- W4295359093 hasRelatedWork W2131040395 @default.
- W4295359093 hasRelatedWork W2387952510 @default.
- W4295359093 hasRelatedWork W2955796858 @default.
- W4295359093 hasRelatedWork W3033694412 @default.
- W4295359093 hasRelatedWork W3133007940 @default.
- W4295359093 hasRelatedWork W3156153093 @default.
- W4295359093 hasRelatedWork W4200112873 @default.
- W4295359093 hasRelatedWork W4224941037 @default.
- W4295359093 hasRelatedWork W4365805892 @default.
- W4295359093 isParatext "false" @default.
- W4295359093 isRetracted "false" @default.