Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295408752> ?p ?o ?g. }
- W4295408752 endingPage "11403" @default.
- W4295408752 startingPage "11403" @default.
- W4295408752 abstract "Feature selection is considered as one of the essential steps in data pre-processing. However, all of the previous studies on predicting PM10 concentration in Malaysia have been limited to statistical method feature selection, and none of these studies used machine-learning approaches. Therefore, the objective of this research is to investigate the influence variables of the PM10 prediction model by using wrapper feature selection to compare the prediction model performance of different wrapper feature selection and to predict the concentration of PM10 for the next day. This research uses 10 years of daily data on pollutant concentrations from two stations (Klang and Shah Alam) obtained from the Department of Environment Malaysia (DOE) from 2009 until 2018. Six wrapper methods (forward selection, backward elimination, stepwise, brute-force, weight-guided and genetic algorithm evolution and the predictive analytics multiple linear regression (MLR) and artificial neural network (ANN)) were implemented in this study. This study found that brute-force is the dominant wrapper method in most of the best models in selecting important features for MLR. Moreover, compared to MLR, ANN provides more advantages regarding model accuracy and permits feature selection in predicting PM10. The overall results revealed that the RMSE value for next day prediction in Klang is 20.728, while the AE value is 15.69. Furthermore, the RMSE value for next day prediction in Shah Alam is 10.004, while the AE value is 7.982. Finally, all of the predicted models in Klang and Shah Alam can be used to predict the PM10 concentrations. This proposed model can be used as a tool for an early warning system in giving air quality information to local authorities in order to formulate air-quality-improvement strategies." @default.
- W4295408752 created "2022-09-13" @default.
- W4295408752 creator A5008497759 @default.
- W4295408752 creator A5018114113 @default.
- W4295408752 creator A5026658582 @default.
- W4295408752 creator A5028467789 @default.
- W4295408752 creator A5029810217 @default.
- W4295408752 creator A5043834051 @default.
- W4295408752 creator A5052456230 @default.
- W4295408752 creator A5065832134 @default.
- W4295408752 creator A5087340334 @default.
- W4295408752 date "2022-09-11" @default.
- W4295408752 modified "2023-09-26" @default.
- W4295408752 title "Improving Air Pollution Prediction Modelling Using Wrapper Feature Selection" @default.
- W4295408752 cites W1970176638 @default.
- W4295408752 cites W1986241067 @default.
- W4295408752 cites W1987428902 @default.
- W4295408752 cites W2042966177 @default.
- W4295408752 cites W2056116149 @default.
- W4295408752 cites W2130231837 @default.
- W4295408752 cites W2138988968 @default.
- W4295408752 cites W2158933803 @default.
- W4295408752 cites W2892205336 @default.
- W4295408752 cites W2982556279 @default.
- W4295408752 cites W2990955039 @default.
- W4295408752 cites W3092448887 @default.
- W4295408752 cites W3115103108 @default.
- W4295408752 cites W3151789137 @default.
- W4295408752 cites W3164152554 @default.
- W4295408752 cites W3210592475 @default.
- W4295408752 cites W4223926961 @default.
- W4295408752 cites W4253201402 @default.
- W4295408752 cites W4253873838 @default.
- W4295408752 doi "https://doi.org/10.3390/su141811403" @default.
- W4295408752 hasPublicationYear "2022" @default.
- W4295408752 type Work @default.
- W4295408752 citedByCount "2" @default.
- W4295408752 countsByYear W42954087522023 @default.
- W4295408752 crossrefType "journal-article" @default.
- W4295408752 hasAuthorship W4295408752A5008497759 @default.
- W4295408752 hasAuthorship W4295408752A5018114113 @default.
- W4295408752 hasAuthorship W4295408752A5026658582 @default.
- W4295408752 hasAuthorship W4295408752A5028467789 @default.
- W4295408752 hasAuthorship W4295408752A5029810217 @default.
- W4295408752 hasAuthorship W4295408752A5043834051 @default.
- W4295408752 hasAuthorship W4295408752A5052456230 @default.
- W4295408752 hasAuthorship W4295408752A5065832134 @default.
- W4295408752 hasAuthorship W4295408752A5087340334 @default.
- W4295408752 hasBestOaLocation W42954087521 @default.
- W4295408752 hasConcept C105795698 @default.
- W4295408752 hasConcept C119857082 @default.
- W4295408752 hasConcept C124101348 @default.
- W4295408752 hasConcept C138885662 @default.
- W4295408752 hasConcept C139945424 @default.
- W4295408752 hasConcept C148483581 @default.
- W4295408752 hasConcept C154945302 @default.
- W4295408752 hasConcept C170964787 @default.
- W4295408752 hasConcept C2776401178 @default.
- W4295408752 hasConcept C33923547 @default.
- W4295408752 hasConcept C41008148 @default.
- W4295408752 hasConcept C41895202 @default.
- W4295408752 hasConcept C45804977 @default.
- W4295408752 hasConcept C50644808 @default.
- W4295408752 hasConcept C81917197 @default.
- W4295408752 hasConceptScore W4295408752C105795698 @default.
- W4295408752 hasConceptScore W4295408752C119857082 @default.
- W4295408752 hasConceptScore W4295408752C124101348 @default.
- W4295408752 hasConceptScore W4295408752C138885662 @default.
- W4295408752 hasConceptScore W4295408752C139945424 @default.
- W4295408752 hasConceptScore W4295408752C148483581 @default.
- W4295408752 hasConceptScore W4295408752C154945302 @default.
- W4295408752 hasConceptScore W4295408752C170964787 @default.
- W4295408752 hasConceptScore W4295408752C2776401178 @default.
- W4295408752 hasConceptScore W4295408752C33923547 @default.
- W4295408752 hasConceptScore W4295408752C41008148 @default.
- W4295408752 hasConceptScore W4295408752C41895202 @default.
- W4295408752 hasConceptScore W4295408752C45804977 @default.
- W4295408752 hasConceptScore W4295408752C50644808 @default.
- W4295408752 hasConceptScore W4295408752C81917197 @default.
- W4295408752 hasFunder F4320318250 @default.
- W4295408752 hasFunder F4320321784 @default.
- W4295408752 hasIssue "18" @default.
- W4295408752 hasLocation W42954087521 @default.
- W4295408752 hasOpenAccess W4295408752 @default.
- W4295408752 hasPrimaryLocation W42954087521 @default.
- W4295408752 hasRelatedWork W2995227436 @default.
- W4295408752 hasRelatedWork W3004809397 @default.
- W4295408752 hasRelatedWork W3040646013 @default.
- W4295408752 hasRelatedWork W3087493185 @default.
- W4295408752 hasRelatedWork W3160244858 @default.
- W4295408752 hasRelatedWork W3163334550 @default.
- W4295408752 hasRelatedWork W3188307501 @default.
- W4295408752 hasRelatedWork W3200179079 @default.
- W4295408752 hasRelatedWork W4286489760 @default.
- W4295408752 hasRelatedWork W4293525103 @default.
- W4295408752 hasVolume "14" @default.
- W4295408752 isParatext "false" @default.
- W4295408752 isRetracted "false" @default.