Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295419466> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4295419466 abstract "Abstract The Systematic Health Artificial Intelligence (SHAI) model trains on data from medical records and clinical laboratory results to temporally identify disease markers with subsequent pathologies, more efficiently and accurately than is done in the current analog practice. The aim of the SHAI model is to gauge a patient’s medical prognostic status based on a conglomerate of data to predict lurking, occult or comorbid pathologies.Newfound associations and predictions would support clinicians in terms of comprehensively visualising a patient’s health profile, both in real-time and for the future. Proxy findings would also help to establish personalised references ranges for clinical pathological investigations of body fluids. The SHAI model processes EMR progress text-based notes through a NLP ‘Bag of Words’ system, which enables the neural network to train in word representation and ‘weigh’ words of proximity. Using ‘forward propagation’ of the vectors will allow for output activation from hidden and non-hidden layers of the developing neural network architecture, to then use ‘multiclass classification’ as the vector contents grow with new data. This manuscript identifies 8 key questions to be addressed by diagnostic ML models and explains SHAI’s design as it pertains to maximising human benefit and minimising bias. Despite the automaticity of this laboratory medicine solution, physician end-users remain essential to the diagnostic process and final clinical judgements." @default.
- W4295419466 created "2022-09-14" @default.
- W4295419466 creator A5080149173 @default.
- W4295419466 date "2022-09-13" @default.
- W4295419466 modified "2023-09-26" @default.
- W4295419466 title "Systematic Health Artificial Intelligence (SHAI) - A pathology based NLP model for improved predictive diagnostics in personalised medicine " @default.
- W4295419466 cites W2002514548 @default.
- W4295419466 cites W2741016737 @default.
- W4295419466 cites W2897762940 @default.
- W4295419466 cites W2898155085 @default.
- W4295419466 cites W2906774465 @default.
- W4295419466 cites W2966351171 @default.
- W4295419466 cites W2999479734 @default.
- W4295419466 cites W3015835103 @default.
- W4295419466 cites W3084230456 @default.
- W4295419466 cites W3109379736 @default.
- W4295419466 cites W3121943121 @default.
- W4295419466 cites W3127157950 @default.
- W4295419466 cites W3137737620 @default.
- W4295419466 cites W3149972283 @default.
- W4295419466 cites W4210532598 @default.
- W4295419466 doi "https://doi.org/10.21203/rs.3.rs-2049616/v1" @default.
- W4295419466 hasPublicationYear "2022" @default.
- W4295419466 type Work @default.
- W4295419466 citedByCount "0" @default.
- W4295419466 crossrefType "posted-content" @default.
- W4295419466 hasAuthorship W4295419466A5080149173 @default.
- W4295419466 hasBestOaLocation W42954194661 @default.
- W4295419466 hasConcept C119857082 @default.
- W4295419466 hasConcept C154945302 @default.
- W4295419466 hasConcept C2522767166 @default.
- W4295419466 hasConcept C41008148 @default.
- W4295419466 hasConceptScore W4295419466C119857082 @default.
- W4295419466 hasConceptScore W4295419466C154945302 @default.
- W4295419466 hasConceptScore W4295419466C2522767166 @default.
- W4295419466 hasConceptScore W4295419466C41008148 @default.
- W4295419466 hasLocation W42954194661 @default.
- W4295419466 hasOpenAccess W4295419466 @default.
- W4295419466 hasPrimaryLocation W42954194661 @default.
- W4295419466 hasRelatedWork W2961085424 @default.
- W4295419466 hasRelatedWork W3046775127 @default.
- W4295419466 hasRelatedWork W3107474891 @default.
- W4295419466 hasRelatedWork W3170094116 @default.
- W4295419466 hasRelatedWork W4205958290 @default.
- W4295419466 hasRelatedWork W4285260836 @default.
- W4295419466 hasRelatedWork W4286629047 @default.
- W4295419466 hasRelatedWork W4306321456 @default.
- W4295419466 hasRelatedWork W4306674287 @default.
- W4295419466 hasRelatedWork W4224009465 @default.
- W4295419466 isParatext "false" @default.
- W4295419466 isRetracted "false" @default.
- W4295419466 workType "article" @default.