Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295420142> ?p ?o ?g. }
- W4295420142 endingPage "3999" @default.
- W4295420142 startingPage "3981" @default.
- W4295420142 abstract "Image-based phenotypic drug profiling is receiving increasing attention in drug discovery and precision medicine. Compared to classical end-point measurements quantifying drug response, image-based profiling enables both the quantification of drug response and characterization of disease entities and drug-induced cell-death phenotypes. Here, we aim to quantify image-based drug responses in patient-derived 3D spheroid tumor cell cultures, tackling the challenges of a lack of single-cell-segmentation methods and limited patient-derived material. Therefore, we investigate deep transfer learning with patient-by-patient fine-tuning for cell-viability quantification. We fine-tune a convolutional neural network (pre-trained on ImageNet) with 210 control images specific to a single training cell line and 54 additional screen -specific assay control images. This method of image-based drug profiling is validated on 6 cell lines with known drug sensitivities, and further tested with primary patient-derived samples in a medium-throughput setting. Network outputs at different drug concentrations are used for drug-sensitivity scoring, and dense-layer activations are used in t-distributed stochastic neighbor embeddings of drugs to visualize groups of drugs with similar cell-death phenotypes. Image-based cell-line experiments show strong correlation to metabolic results ( R ≈ 0.7 ) and confirm expected hits, indicating the predictive power of deep learning to identify drug-hit candidates for individual patients. In patient-derived samples, combining drug sensitivity scoring with phenotypic analysis may provide opportunities for complementary combination treatments. Deep transfer learning with patient-by-patient fine-tuning is a promising, segmentation-free image-analysis approach for precision medicine and drug discovery." @default.
- W4295420142 created "2022-09-14" @default.
- W4295420142 creator A5004020500 @default.
- W4295420142 creator A5005372827 @default.
- W4295420142 creator A5017416578 @default.
- W4295420142 creator A5019911093 @default.
- W4295420142 creator A5031154120 @default.
- W4295420142 creator A5044923549 @default.
- W4295420142 creator A5050777133 @default.
- W4295420142 creator A5071523423 @default.
- W4295420142 date "2022-12-01" @default.
- W4295420142 modified "2023-10-14" @default.
- W4295420142 title "Patient-by-Patient Deep Transfer Learning for Drug-Response Profiling Using Confocal Fluorescence Microscopy of Pediatric Patient-Derived Tumor-Cell Spheroids" @default.
- W4295420142 cites W1980324695 @default.
- W4295420142 cites W1991001144 @default.
- W4295420142 cites W2002783575 @default.
- W4295420142 cites W2031441006 @default.
- W4295420142 cites W2037389769 @default.
- W4295420142 cites W2075258506 @default.
- W4295420142 cites W2076104235 @default.
- W4295420142 cites W2100772783 @default.
- W4295420142 cites W2107554012 @default.
- W4295420142 cites W2108598243 @default.
- W4295420142 cites W2115517051 @default.
- W4295420142 cites W2141863316 @default.
- W4295420142 cites W2144615523 @default.
- W4295420142 cites W2156732033 @default.
- W4295420142 cites W2168106545 @default.
- W4295420142 cites W2295223477 @default.
- W4295420142 cites W2332155194 @default.
- W4295420142 cites W2462717932 @default.
- W4295420142 cites W2509141893 @default.
- W4295420142 cites W2510710599 @default.
- W4295420142 cites W2513408092 @default.
- W4295420142 cites W2554439427 @default.
- W4295420142 cites W2588030037 @default.
- W4295420142 cites W2601380465 @default.
- W4295420142 cites W2726242674 @default.
- W4295420142 cites W2765793020 @default.
- W4295420142 cites W2778947919 @default.
- W4295420142 cites W2796393045 @default.
- W4295420142 cites W2803317672 @default.
- W4295420142 cites W2887850845 @default.
- W4295420142 cites W2899658724 @default.
- W4295420142 cites W2918747683 @default.
- W4295420142 cites W2940757033 @default.
- W4295420142 cites W2951730672 @default.
- W4295420142 cites W2954182784 @default.
- W4295420142 cites W2975634117 @default.
- W4295420142 cites W2982386637 @default.
- W4295420142 cites W2992308087 @default.
- W4295420142 cites W2996862224 @default.
- W4295420142 cites W3008107700 @default.
- W4295420142 cites W3010256878 @default.
- W4295420142 cites W3013014833 @default.
- W4295420142 cites W3015198926 @default.
- W4295420142 cites W3022408452 @default.
- W4295420142 cites W3022626570 @default.
- W4295420142 cites W3029834775 @default.
- W4295420142 cites W3035253074 @default.
- W4295420142 cites W3046979613 @default.
- W4295420142 cites W3048087138 @default.
- W4295420142 cites W3094540299 @default.
- W4295420142 cites W3102564565 @default.
- W4295420142 cites W3111112091 @default.
- W4295420142 cites W3113917069 @default.
- W4295420142 cites W3119109946 @default.
- W4295420142 cites W3130852260 @default.
- W4295420142 cites W3139456761 @default.
- W4295420142 cites W3190606189 @default.
- W4295420142 cites W3217527321 @default.
- W4295420142 cites W4210508051 @default.
- W4295420142 cites W4211242236 @default.
- W4295420142 cites W4225992018 @default.
- W4295420142 cites W4241843979 @default.
- W4295420142 cites W4281748749 @default.
- W4295420142 doi "https://doi.org/10.1109/tmi.2022.3205554" @default.
- W4295420142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36099221" @default.
- W4295420142 hasPublicationYear "2022" @default.
- W4295420142 type Work @default.
- W4295420142 citedByCount "1" @default.
- W4295420142 countsByYear W42954201422023 @default.
- W4295420142 crossrefType "journal-article" @default.
- W4295420142 hasAuthorship W4295420142A5004020500 @default.
- W4295420142 hasAuthorship W4295420142A5005372827 @default.
- W4295420142 hasAuthorship W4295420142A5017416578 @default.
- W4295420142 hasAuthorship W4295420142A5019911093 @default.
- W4295420142 hasAuthorship W4295420142A5031154120 @default.
- W4295420142 hasAuthorship W4295420142A5044923549 @default.
- W4295420142 hasAuthorship W4295420142A5050777133 @default.
- W4295420142 hasAuthorship W4295420142A5071523423 @default.
- W4295420142 hasBestOaLocation W42954201421 @default.
- W4295420142 hasConcept C108583219 @default.
- W4295420142 hasConcept C111919701 @default.
- W4295420142 hasConcept C1491633281 @default.
- W4295420142 hasConcept C153180895 @default.
- W4295420142 hasConcept C154945302 @default.
- W4295420142 hasConcept C157044486 @default.