Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295435191> ?p ?o ?g. }
- W4295435191 endingPage "129904" @default.
- W4295435191 startingPage "129904" @default.
- W4295435191 abstract "As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms." @default.
- W4295435191 created "2022-09-14" @default.
- W4295435191 creator A5033246969 @default.
- W4295435191 creator A5042181780 @default.
- W4295435191 creator A5053298437 @default.
- W4295435191 creator A5057674674 @default.
- W4295435191 creator A5065266286 @default.
- W4295435191 creator A5068252474 @default.
- W4295435191 creator A5068897236 @default.
- W4295435191 creator A5076771261 @default.
- W4295435191 creator A5089205591 @default.
- W4295435191 date "2023-01-01" @default.
- W4295435191 modified "2023-10-18" @default.
- W4295435191 title "Modeling phytoremediation of heavy metal contaminated soils through machine learning" @default.
- W4295435191 cites W1495137042 @default.
- W4295435191 cites W1996509804 @default.
- W4295435191 cites W2006895451 @default.
- W4295435191 cites W2044565188 @default.
- W4295435191 cites W2068535240 @default.
- W4295435191 cites W2118054386 @default.
- W4295435191 cites W2159994578 @default.
- W4295435191 cites W2163689842 @default.
- W4295435191 cites W2165089526 @default.
- W4295435191 cites W2272561188 @default.
- W4295435191 cites W2512636194 @default.
- W4295435191 cites W2550281250 @default.
- W4295435191 cites W2585906312 @default.
- W4295435191 cites W2621283071 @default.
- W4295435191 cites W2770138969 @default.
- W4295435191 cites W2895214806 @default.
- W4295435191 cites W2897702508 @default.
- W4295435191 cites W2923675256 @default.
- W4295435191 cites W2963774760 @default.
- W4295435191 cites W2996124804 @default.
- W4295435191 cites W3010435708 @default.
- W4295435191 cites W3010437674 @default.
- W4295435191 cites W3024525656 @default.
- W4295435191 cites W3036975190 @default.
- W4295435191 cites W3082813113 @default.
- W4295435191 cites W3093274391 @default.
- W4295435191 cites W3102476541 @default.
- W4295435191 cites W3106945941 @default.
- W4295435191 cites W3111724577 @default.
- W4295435191 cites W3112121750 @default.
- W4295435191 cites W3133828512 @default.
- W4295435191 cites W3170812401 @default.
- W4295435191 cites W3183728074 @default.
- W4295435191 cites W3186570958 @default.
- W4295435191 cites W3191484853 @default.
- W4295435191 cites W3214146712 @default.
- W4295435191 cites W4206968505 @default.
- W4295435191 cites W4221059529 @default.
- W4295435191 doi "https://doi.org/10.1016/j.jhazmat.2022.129904" @default.
- W4295435191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36096061" @default.
- W4295435191 hasPublicationYear "2023" @default.
- W4295435191 type Work @default.
- W4295435191 citedByCount "17" @default.
- W4295435191 countsByYear W42954351912023 @default.
- W4295435191 crossrefType "journal-article" @default.
- W4295435191 hasAuthorship W4295435191A5033246969 @default.
- W4295435191 hasAuthorship W4295435191A5042181780 @default.
- W4295435191 hasAuthorship W4295435191A5053298437 @default.
- W4295435191 hasAuthorship W4295435191A5057674674 @default.
- W4295435191 hasAuthorship W4295435191A5065266286 @default.
- W4295435191 hasAuthorship W4295435191A5068252474 @default.
- W4295435191 hasAuthorship W4295435191A5068897236 @default.
- W4295435191 hasAuthorship W4295435191A5076771261 @default.
- W4295435191 hasAuthorship W4295435191A5089205591 @default.
- W4295435191 hasConcept C107872376 @default.
- W4295435191 hasConcept C112570922 @default.
- W4295435191 hasConcept C114260506 @default.
- W4295435191 hasConcept C159390177 @default.
- W4295435191 hasConcept C159750122 @default.
- W4295435191 hasConcept C185592680 @default.
- W4295435191 hasConcept C18903297 @default.
- W4295435191 hasConcept C21410773 @default.
- W4295435191 hasConcept C2776053758 @default.
- W4295435191 hasConcept C39432304 @default.
- W4295435191 hasConcept C522964758 @default.
- W4295435191 hasConcept C61952481 @default.
- W4295435191 hasConcept C63797996 @default.
- W4295435191 hasConcept C6557445 @default.
- W4295435191 hasConcept C65580899 @default.
- W4295435191 hasConcept C71572567 @default.
- W4295435191 hasConcept C86803240 @default.
- W4295435191 hasConcept C93765907 @default.
- W4295435191 hasConceptScore W4295435191C107872376 @default.
- W4295435191 hasConceptScore W4295435191C112570922 @default.
- W4295435191 hasConceptScore W4295435191C114260506 @default.
- W4295435191 hasConceptScore W4295435191C159390177 @default.
- W4295435191 hasConceptScore W4295435191C159750122 @default.
- W4295435191 hasConceptScore W4295435191C185592680 @default.
- W4295435191 hasConceptScore W4295435191C18903297 @default.
- W4295435191 hasConceptScore W4295435191C21410773 @default.
- W4295435191 hasConceptScore W4295435191C2776053758 @default.
- W4295435191 hasConceptScore W4295435191C39432304 @default.
- W4295435191 hasConceptScore W4295435191C522964758 @default.
- W4295435191 hasConceptScore W4295435191C61952481 @default.