Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295439997> ?p ?o ?g. }
- W4295439997 endingPage "113641" @default.
- W4295439997 startingPage "113641" @default.
- W4295439997 abstract "The time window from stroke onset is critical for the treatment decision. However, in unknown onset stroke, it is often difficult to determine the exact onset time because of the lack of assessment methods, which can result in controversial and random treatment decisions. Previous studies have shown that serum biomarkers, in addition to imaging assessment, are useful for determining the stroke onset time. However, as yet there are no specific biomarkers or corresponding methodologies that are accurate and effective for determining the onset time of unknown onset stroke. Herein, we describe our novel advanced metabolites-based machine learning method (termed extreme gradient boost [XGBoost]) combined with recursive feature elimination, which accurately screened five metabolites from 1124 metabolites detected in serum. These metabolites were capable of both detecting acute ischemic stroke and backtracking the acute ischemic stroke onset time. To further investigate the pathological mechanisms of acute ischemic stroke, we also examined characteristic metabolites in different brain regions, and found two metabolites that could distinguish the core infarct area from the ischemic penumbra. Although this study is based on animal experiments, our machine learning framework and selected metabolites may provide a basis for clinical stroke evaluation and treatment." @default.
- W4295439997 created "2022-09-14" @default.
- W4295439997 creator A5003762748 @default.
- W4295439997 creator A5013973657 @default.
- W4295439997 creator A5015197245 @default.
- W4295439997 creator A5019505603 @default.
- W4295439997 creator A5022585660 @default.
- W4295439997 creator A5032725690 @default.
- W4295439997 creator A5033162110 @default.
- W4295439997 creator A5045140402 @default.
- W4295439997 creator A5056506976 @default.
- W4295439997 creator A5058984367 @default.
- W4295439997 creator A5062617303 @default.
- W4295439997 creator A5063373182 @default.
- W4295439997 creator A5063743178 @default.
- W4295439997 creator A5071798264 @default.
- W4295439997 creator A5073187084 @default.
- W4295439997 creator A5078380805 @default.
- W4295439997 creator A5079462791 @default.
- W4295439997 creator A5086326013 @default.
- W4295439997 creator A5089998406 @default.
- W4295439997 date "2022-11-01" @default.
- W4295439997 modified "2023-10-18" @default.
- W4295439997 title "Detection of acute ischemic stroke and backtracking stroke onset time via machine learning analysis of metabolomics" @default.
- W4295439997 cites W1529113173 @default.
- W4295439997 cites W1926169850 @default.
- W4295439997 cites W1990022183 @default.
- W4295439997 cites W2003869285 @default.
- W4295439997 cites W2027712267 @default.
- W4295439997 cites W2028978988 @default.
- W4295439997 cites W2033809814 @default.
- W4295439997 cites W2052462912 @default.
- W4295439997 cites W2110779213 @default.
- W4295439997 cites W2124559318 @default.
- W4295439997 cites W2136943950 @default.
- W4295439997 cites W2160486532 @default.
- W4295439997 cites W2576222446 @default.
- W4295439997 cites W2594322693 @default.
- W4295439997 cites W2605361223 @default.
- W4295439997 cites W2611138580 @default.
- W4295439997 cites W2736228963 @default.
- W4295439997 cites W2756863658 @default.
- W4295439997 cites W2772729317 @default.
- W4295439997 cites W2779686009 @default.
- W4295439997 cites W2787647639 @default.
- W4295439997 cites W2794262486 @default.
- W4295439997 cites W2803802119 @default.
- W4295439997 cites W2883441729 @default.
- W4295439997 cites W2902190021 @default.
- W4295439997 cites W2909039584 @default.
- W4295439997 cites W2911593062 @default.
- W4295439997 cites W2916376502 @default.
- W4295439997 cites W2921112006 @default.
- W4295439997 cites W2921416645 @default.
- W4295439997 cites W2934399013 @default.
- W4295439997 cites W2936573766 @default.
- W4295439997 cites W2980479003 @default.
- W4295439997 cites W3005979627 @default.
- W4295439997 cites W3007094094 @default.
- W4295439997 cites W3014244926 @default.
- W4295439997 cites W3024604391 @default.
- W4295439997 cites W3038635856 @default.
- W4295439997 cites W3112280286 @default.
- W4295439997 cites W3200807874 @default.
- W4295439997 cites W4205751567 @default.
- W4295439997 doi "https://doi.org/10.1016/j.biopha.2022.113641" @default.
- W4295439997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36088854" @default.
- W4295439997 hasPublicationYear "2022" @default.
- W4295439997 type Work @default.
- W4295439997 citedByCount "7" @default.
- W4295439997 countsByYear W42954399972023 @default.
- W4295439997 crossrefType "journal-article" @default.
- W4295439997 hasAuthorship W4295439997A5003762748 @default.
- W4295439997 hasAuthorship W4295439997A5013973657 @default.
- W4295439997 hasAuthorship W4295439997A5015197245 @default.
- W4295439997 hasAuthorship W4295439997A5019505603 @default.
- W4295439997 hasAuthorship W4295439997A5022585660 @default.
- W4295439997 hasAuthorship W4295439997A5032725690 @default.
- W4295439997 hasAuthorship W4295439997A5033162110 @default.
- W4295439997 hasAuthorship W4295439997A5045140402 @default.
- W4295439997 hasAuthorship W4295439997A5056506976 @default.
- W4295439997 hasAuthorship W4295439997A5058984367 @default.
- W4295439997 hasAuthorship W4295439997A5062617303 @default.
- W4295439997 hasAuthorship W4295439997A5063373182 @default.
- W4295439997 hasAuthorship W4295439997A5063743178 @default.
- W4295439997 hasAuthorship W4295439997A5071798264 @default.
- W4295439997 hasAuthorship W4295439997A5073187084 @default.
- W4295439997 hasAuthorship W4295439997A5078380805 @default.
- W4295439997 hasAuthorship W4295439997A5079462791 @default.
- W4295439997 hasAuthorship W4295439997A5086326013 @default.
- W4295439997 hasAuthorship W4295439997A5089998406 @default.
- W4295439997 hasBestOaLocation W42954399971 @default.
- W4295439997 hasConcept C11413529 @default.
- W4295439997 hasConcept C119857082 @default.
- W4295439997 hasConcept C126322002 @default.
- W4295439997 hasConcept C127413603 @default.
- W4295439997 hasConcept C156884757 @default.
- W4295439997 hasConcept C207886595 @default.