Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295456330> ?p ?o ?g. }
- W4295456330 endingPage "1239" @default.
- W4295456330 startingPage "1229" @default.
- W4295456330 abstract "Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.’s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329." @default.
- W4295456330 created "2022-09-14" @default.
- W4295456330 creator A5000432967 @default.
- W4295456330 creator A5001681060 @default.
- W4295456330 creator A5004283358 @default.
- W4295456330 creator A5007006789 @default.
- W4295456330 creator A5015102287 @default.
- W4295456330 creator A5017617692 @default.
- W4295456330 creator A5021379796 @default.
- W4295456330 creator A5024257143 @default.
- W4295456330 creator A5031315906 @default.
- W4295456330 creator A5036233749 @default.
- W4295456330 creator A5038522283 @default.
- W4295456330 creator A5039055312 @default.
- W4295456330 creator A5042397552 @default.
- W4295456330 creator A5053561579 @default.
- W4295456330 creator A5057776374 @default.
- W4295456330 creator A5063647526 @default.
- W4295456330 creator A5064545976 @default.
- W4295456330 creator A5064771173 @default.
- W4295456330 creator A5065516345 @default.
- W4295456330 creator A5066971360 @default.
- W4295456330 creator A5070458862 @default.
- W4295456330 creator A5075166317 @default.
- W4295456330 creator A5083228843 @default.
- W4295456330 creator A5085352453 @default.
- W4295456330 creator A5085375813 @default.
- W4295456330 date "2022-11-01" @default.
- W4295456330 modified "2023-10-18" @default.
- W4295456330 title "Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge" @default.
- W4295456330 cites W1967357360 @default.
- W4295456330 cites W1973767788 @default.
- W4295456330 cites W1974423646 @default.
- W4295456330 cites W1995705381 @default.
- W4295456330 cites W2003064100 @default.
- W4295456330 cites W2004679506 @default.
- W4295456330 cites W2006202082 @default.
- W4295456330 cites W2028802149 @default.
- W4295456330 cites W2038469710 @default.
- W4295456330 cites W2045030989 @default.
- W4295456330 cites W2051319465 @default.
- W4295456330 cites W2099311014 @default.
- W4295456330 cites W2103645914 @default.
- W4295456330 cites W2112316706 @default.
- W4295456330 cites W2114363508 @default.
- W4295456330 cites W2145280166 @default.
- W4295456330 cites W2152225408 @default.
- W4295456330 cites W2164777277 @default.
- W4295456330 cites W2548849041 @default.
- W4295456330 cites W2570357469 @default.
- W4295456330 cites W2769276186 @default.
- W4295456330 cites W2776350585 @default.
- W4295456330 cites W2784374589 @default.
- W4295456330 cites W2898569492 @default.
- W4295456330 cites W3005437800 @default.
- W4295456330 cites W3013197036 @default.
- W4295456330 cites W3021083477 @default.
- W4295456330 cites W3078897940 @default.
- W4295456330 cites W3093082854 @default.
- W4295456330 cites W3119073133 @default.
- W4295456330 cites W3178593849 @default.
- W4295456330 cites W3180884803 @default.
- W4295456330 cites W3192232155 @default.
- W4295456330 cites W3194982939 @default.
- W4295456330 cites W3203901993 @default.
- W4295456330 cites W4210856803 @default.
- W4295456330 cites W4223648703 @default.
- W4295456330 cites W4280527954 @default.
- W4295456330 cites W4281658283 @default.
- W4295456330 cites W4281887347 @default.
- W4295456330 doi "https://doi.org/10.1093/ajcn/nqac251" @default.
- W4295456330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36095136" @default.
- W4295456330 hasPublicationYear "2022" @default.
- W4295456330 type Work @default.
- W4295456330 citedByCount "1" @default.
- W4295456330 countsByYear W42954563302022 @default.
- W4295456330 crossrefType "journal-article" @default.
- W4295456330 hasAuthorship W4295456330A5000432967 @default.
- W4295456330 hasAuthorship W4295456330A5001681060 @default.
- W4295456330 hasAuthorship W4295456330A5004283358 @default.
- W4295456330 hasAuthorship W4295456330A5007006789 @default.
- W4295456330 hasAuthorship W4295456330A5015102287 @default.
- W4295456330 hasAuthorship W4295456330A5017617692 @default.
- W4295456330 hasAuthorship W4295456330A5021379796 @default.
- W4295456330 hasAuthorship W4295456330A5024257143 @default.
- W4295456330 hasAuthorship W4295456330A5031315906 @default.
- W4295456330 hasAuthorship W4295456330A5036233749 @default.
- W4295456330 hasAuthorship W4295456330A5038522283 @default.
- W4295456330 hasAuthorship W4295456330A5039055312 @default.
- W4295456330 hasAuthorship W4295456330A5042397552 @default.
- W4295456330 hasAuthorship W4295456330A5053561579 @default.
- W4295456330 hasAuthorship W4295456330A5057776374 @default.
- W4295456330 hasAuthorship W4295456330A5063647526 @default.
- W4295456330 hasAuthorship W4295456330A5064545976 @default.
- W4295456330 hasAuthorship W4295456330A5064771173 @default.
- W4295456330 hasAuthorship W4295456330A5065516345 @default.
- W4295456330 hasAuthorship W4295456330A5066971360 @default.
- W4295456330 hasAuthorship W4295456330A5070458862 @default.