Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295514656> ?p ?o ?g. }
- W4295514656 endingPage "325" @default.
- W4295514656 startingPage "314" @default.
- W4295514656 abstract "Abstract This study aimed to develop and evaluate a population pharmacokinetic (PPK) combined machine learning approach to predict tacrolimus trough concentrations for Chinese adult liver transplant recipients in the early posttransplant period. Tacrolimus trough concentrations were retrospectively collected from routine monitoring records of liver transplant recipients and divided into the training data set (1287 concentrations in 145 recipients) and the test data set (296 concentrations in 36 recipients). A PPK model was first established using NONMEM. Then a machine learning model of Xgboost was adapted to fit the estimated individual pharmacokinetic parameters obtained from the PPK model with Bayesian forecasting. The performance of the final PPK model and Xgboost model was compared in the test data set. In the final PPK model, tacrolimus daily dose, postoperative days, hematocrit, aspartate aminotransferase, and concomitant voriconazole, were identified to significantly influence the clearance. The postoperative days along with hematocrit significantly influence the volume of distribution. In the Xgboost model, the first 5 predictors for predicting the clearance were concomitant with voriconazole, sex, single nucleotide polymorphisms of CYP3A4*1G and CYP3A5*3 in recipients, and tacrolimus daily dose, for the volume of distribution were postoperative days, age, weight, total bilirubin and graft : recipient weight ratio. In the test data set, the Xgboost model showed the minimum median prediction error of tacrolimus concentrations, less than the PPK model with or without Bayesian forecasting. In conclusion, a PPK combined machine learning approach could improve the prediction of tacrolimus concentrations for Chinese adult liver transplant recipients in the early posttransplant period." @default.
- W4295514656 created "2022-09-14" @default.
- W4295514656 creator A5000712590 @default.
- W4295514656 creator A5030660225 @default.
- W4295514656 creator A5032379172 @default.
- W4295514656 creator A5034544317 @default.
- W4295514656 creator A5046626421 @default.
- W4295514656 creator A5048119294 @default.
- W4295514656 creator A5081946864 @default.
- W4295514656 date "2022-12-29" @default.
- W4295514656 modified "2023-09-27" @default.
- W4295514656 title "Population Pharmacokinetic Modeling Combined With Machine Learning Approach Improved Tacrolimus Trough Concentration Prediction in Chinese Adult Liver Transplant Recipients" @default.
- W4295514656 cites W1484895848 @default.
- W4295514656 cites W1576161048 @default.
- W4295514656 cites W1922139510 @default.
- W4295514656 cites W1951315012 @default.
- W4295514656 cites W1983165519 @default.
- W4295514656 cites W1993600048 @default.
- W4295514656 cites W1997538585 @default.
- W4295514656 cites W2000234125 @default.
- W4295514656 cites W2013119377 @default.
- W4295514656 cites W2049244891 @default.
- W4295514656 cites W2063695764 @default.
- W4295514656 cites W2083594960 @default.
- W4295514656 cites W2091048867 @default.
- W4295514656 cites W2096959890 @default.
- W4295514656 cites W2141007997 @default.
- W4295514656 cites W2154290668 @default.
- W4295514656 cites W2172119486 @default.
- W4295514656 cites W2283978743 @default.
- W4295514656 cites W2323251827 @default.
- W4295514656 cites W2334086409 @default.
- W4295514656 cites W2602436970 @default.
- W4295514656 cites W2728249795 @default.
- W4295514656 cites W2793311913 @default.
- W4295514656 cites W2898383934 @default.
- W4295514656 cites W2898885869 @default.
- W4295514656 cites W2938094719 @default.
- W4295514656 cites W2942673049 @default.
- W4295514656 cites W2989304599 @default.
- W4295514656 cites W3049751224 @default.
- W4295514656 cites W3102476541 @default.
- W4295514656 cites W3106836958 @default.
- W4295514656 cites W3126972077 @default.
- W4295514656 cites W3133272880 @default.
- W4295514656 cites W3210424514 @default.
- W4295514656 cites W4211179245 @default.
- W4295514656 doi "https://doi.org/10.1002/jcph.2156" @default.
- W4295514656 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36097320" @default.
- W4295514656 hasPublicationYear "2022" @default.
- W4295514656 type Work @default.
- W4295514656 citedByCount "2" @default.
- W4295514656 countsByYear W42955146562023 @default.
- W4295514656 crossrefType "journal-article" @default.
- W4295514656 hasAuthorship W4295514656A5000712590 @default.
- W4295514656 hasAuthorship W4295514656A5030660225 @default.
- W4295514656 hasAuthorship W4295514656A5032379172 @default.
- W4295514656 hasAuthorship W4295514656A5034544317 @default.
- W4295514656 hasAuthorship W4295514656A5046626421 @default.
- W4295514656 hasAuthorship W4295514656A5048119294 @default.
- W4295514656 hasAuthorship W4295514656A5081946864 @default.
- W4295514656 hasConcept C112705442 @default.
- W4295514656 hasConcept C126322002 @default.
- W4295514656 hasConcept C126894567 @default.
- W4295514656 hasConcept C128057223 @default.
- W4295514656 hasConcept C2776239304 @default.
- W4295514656 hasConcept C2779384505 @default.
- W4295514656 hasConcept C2779609443 @default.
- W4295514656 hasConcept C2780272996 @default.
- W4295514656 hasConcept C2780959883 @default.
- W4295514656 hasConcept C2908647359 @default.
- W4295514656 hasConcept C2909675724 @default.
- W4295514656 hasConcept C2910800852 @default.
- W4295514656 hasConcept C2911091166 @default.
- W4295514656 hasConcept C31785415 @default.
- W4295514656 hasConcept C71924100 @default.
- W4295514656 hasConcept C99454951 @default.
- W4295514656 hasConceptScore W4295514656C112705442 @default.
- W4295514656 hasConceptScore W4295514656C126322002 @default.
- W4295514656 hasConceptScore W4295514656C126894567 @default.
- W4295514656 hasConceptScore W4295514656C128057223 @default.
- W4295514656 hasConceptScore W4295514656C2776239304 @default.
- W4295514656 hasConceptScore W4295514656C2779384505 @default.
- W4295514656 hasConceptScore W4295514656C2779609443 @default.
- W4295514656 hasConceptScore W4295514656C2780272996 @default.
- W4295514656 hasConceptScore W4295514656C2780959883 @default.
- W4295514656 hasConceptScore W4295514656C2908647359 @default.
- W4295514656 hasConceptScore W4295514656C2909675724 @default.
- W4295514656 hasConceptScore W4295514656C2910800852 @default.
- W4295514656 hasConceptScore W4295514656C2911091166 @default.
- W4295514656 hasConceptScore W4295514656C31785415 @default.
- W4295514656 hasConceptScore W4295514656C71924100 @default.
- W4295514656 hasConceptScore W4295514656C99454951 @default.
- W4295514656 hasIssue "3" @default.
- W4295514656 hasLocation W42955146561 @default.
- W4295514656 hasLocation W42955146562 @default.
- W4295514656 hasOpenAccess W4295514656 @default.
- W4295514656 hasPrimaryLocation W42955146561 @default.