Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295537332> ?p ?o ?g. }
- W4295537332 endingPage "245" @default.
- W4295537332 startingPage "245" @default.
- W4295537332 abstract "The current technological advances have pushed the quantification of exercise intensity to new era of physical exercise sciences. Monitoring physical exercise is essential in the process of planning, applying, and controlling loads for performance optimization and health. A lot of research studies applied various statistical approaches to estimate various physiological indices, to our knowledge, no studies found to investigate the relationship of facial color changes and increased exercise intensity. The aim of this study was to develop a non-contact method based on computer vision to determine the heart rate and, ultimately, the exercise intensity. The method was based on analyzing facial color changes during exercise by using RGB, HSV, YCbCr, Lab, and YUV color models. Nine university students participated in the study (mean age = 26.88 ± 6.01 years, mean weight = 72.56 ± 14.27 kg, mean height = 172.88 ± 12.04 cm, six males and three females, and all white Caucasian). The data analyses were carried out separately for each participant (personalized model) as well as all the participants at a time (universal model). The multiple auto regressions, and a multiple polynomial regression model were designed to predict maximum heart rate percentage (maxHR%) from each color models. The results were analyzed and evaluated using Root Mean Square Error (RMSE), F-values, and R-square. The multiple polynomial regression using all participants exhibits the best accuracy with RMSE of 6.75 (R-square = 0.78). Exercise prescription and monitoring can benefit from the use of these methods, for example, to optimize the process of online monitoring, without having the need to use any other instrumentation." @default.
- W4295537332 created "2022-09-14" @default.
- W4295537332 creator A5000622708 @default.
- W4295537332 creator A5025825342 @default.
- W4295537332 creator A5039199179 @default.
- W4295537332 creator A5078919198 @default.
- W4295537332 creator A5083616781 @default.
- W4295537332 date "2022-09-09" @default.
- W4295537332 modified "2023-09-30" @default.
- W4295537332 title "Using Computer Vision to Track Facial Color Changes and Predict Heart Rate" @default.
- W4295537332 cites W1528666356 @default.
- W4295537332 cites W1564237868 @default.
- W4295537332 cites W1804464592 @default.
- W4295537332 cites W1958347114 @default.
- W4295537332 cites W1963791578 @default.
- W4295537332 cites W1984026713 @default.
- W4295537332 cites W2005731365 @default.
- W4295537332 cites W2008821584 @default.
- W4295537332 cites W2010343019 @default.
- W4295537332 cites W2015860097 @default.
- W4295537332 cites W2021553583 @default.
- W4295537332 cites W2023486316 @default.
- W4295537332 cites W2031481268 @default.
- W4295537332 cites W2056091383 @default.
- W4295537332 cites W2070353225 @default.
- W4295537332 cites W2078970181 @default.
- W4295537332 cites W2090296913 @default.
- W4295537332 cites W2093033615 @default.
- W4295537332 cites W2130481037 @default.
- W4295537332 cites W2135220085 @default.
- W4295537332 cites W2157803415 @default.
- W4295537332 cites W2166308329 @default.
- W4295537332 cites W2167918392 @default.
- W4295537332 cites W2295567513 @default.
- W4295537332 cites W2320280686 @default.
- W4295537332 cites W2329242152 @default.
- W4295537332 cites W2582288209 @default.
- W4295537332 cites W2592075940 @default.
- W4295537332 cites W2595757535 @default.
- W4295537332 cites W2613538271 @default.
- W4295537332 cites W2677965197 @default.
- W4295537332 cites W2731175120 @default.
- W4295537332 cites W2752527301 @default.
- W4295537332 cites W2767264912 @default.
- W4295537332 cites W2773234590 @default.
- W4295537332 cites W2789712770 @default.
- W4295537332 cites W2804900172 @default.
- W4295537332 cites W2884996318 @default.
- W4295537332 cites W2898806014 @default.
- W4295537332 cites W2955298965 @default.
- W4295537332 cites W2969842856 @default.
- W4295537332 cites W3005987058 @default.
- W4295537332 cites W3011987752 @default.
- W4295537332 cites W3097096317 @default.
- W4295537332 cites W3137610584 @default.
- W4295537332 cites W3164504725 @default.
- W4295537332 cites W3187861433 @default.
- W4295537332 cites W4200102736 @default.
- W4295537332 cites W4220741406 @default.
- W4295537332 cites W4309551312 @default.
- W4295537332 doi "https://doi.org/10.3390/jimaging8090245" @default.
- W4295537332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36135410" @default.
- W4295537332 hasPublicationYear "2022" @default.
- W4295537332 type Work @default.
- W4295537332 citedByCount "1" @default.
- W4295537332 countsByYear W42955373322022 @default.
- W4295537332 crossrefType "journal-article" @default.
- W4295537332 hasAuthorship W4295537332A5000622708 @default.
- W4295537332 hasAuthorship W4295537332A5025825342 @default.
- W4295537332 hasAuthorship W4295537332A5039199179 @default.
- W4295537332 hasAuthorship W4295537332A5078919198 @default.
- W4295537332 hasAuthorship W4295537332A5083616781 @default.
- W4295537332 hasBestOaLocation W42955373321 @default.
- W4295537332 hasConcept C105795698 @default.
- W4295537332 hasConcept C115961682 @default.
- W4295537332 hasConcept C139945424 @default.
- W4295537332 hasConcept C142616399 @default.
- W4295537332 hasConcept C154945302 @default.
- W4295537332 hasConcept C1862650 @default.
- W4295537332 hasConcept C2779407163 @default.
- W4295537332 hasConcept C2779673892 @default.
- W4295537332 hasConcept C33923547 @default.
- W4295537332 hasConcept C41008148 @default.
- W4295537332 hasConcept C71924100 @default.
- W4295537332 hasConcept C82990744 @default.
- W4295537332 hasConcept C9417928 @default.
- W4295537332 hasConceptScore W4295537332C105795698 @default.
- W4295537332 hasConceptScore W4295537332C115961682 @default.
- W4295537332 hasConceptScore W4295537332C139945424 @default.
- W4295537332 hasConceptScore W4295537332C142616399 @default.
- W4295537332 hasConceptScore W4295537332C154945302 @default.
- W4295537332 hasConceptScore W4295537332C1862650 @default.
- W4295537332 hasConceptScore W4295537332C2779407163 @default.
- W4295537332 hasConceptScore W4295537332C2779673892 @default.
- W4295537332 hasConceptScore W4295537332C33923547 @default.
- W4295537332 hasConceptScore W4295537332C41008148 @default.
- W4295537332 hasConceptScore W4295537332C71924100 @default.
- W4295537332 hasConceptScore W4295537332C82990744 @default.