Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295539897> ?p ?o ?g. }
- W4295539897 endingPage "107124" @default.
- W4295539897 startingPage "107124" @default.
- W4295539897 abstract "Early detection of myocardial ischemia is a necessary but difficult problem in cardiovascular diseases. Approaches that exclusively rely on classical ST and T wave changes on the standard 12-lead electrocardiogram (ECG) lack sufficient accuracy in detecting myocardial ischemia. This study aims to construct generalizable models for the detection of myocardial ischemia in patients with subtle ECG waveform changes (namely non-diagnostic ECG) using ensemble learning to integrate ECG dynamic features acquired via deterministic learning.First, cardiodynamicsgram (CDG), a noninvasive spatiotemporal electrocardiographic method, is generated through dynamic modeling of ECG signals using the deterministic learning algorithm. Then, the spectral fitting exponent, Lyapunov exponent, and Lempel-Ziv complexity are extracted from CDG. Subsequently, the bagging-based heterogeneous ensemble algorithm is applied on CDG features to generate diverse base classifiers and aggregate them with weighted voting to obtain an ensemble model for myocardial ischemia detection. Finally, we train and test the proposed heterogeneous ensemble model on a real-world clinical dataset. This dataset consists of 499 non-diagnostic 12-lead ECG records from 499 patients collected from three independent medical centers, including 383 patients with myocardial ischemia and 116 patients without ischemia.With 10-times 5-fold cross-validation technology, our proposed method achieves an average accuracy of 89.10%, sensitivity of 91.72%, and specificity of 82.69% using the heterogeneous ensemble algorithm on the real-world clinical dataset. On three independent medical centers, our ensemble model also achieves accuracy performance over 82% for patients with non-diagnostic ECG. Furthermore, our ensemble model trained with real-world clinical data yields promising results of 91.11% accuracy, 90.49% sensitivity, and 92.88% specificity on the external test set of the public PTB dataset.The experimental results demonstrate that the proposed model combining ensemble learning and deterministic learning presents excellent diagnostic accuracy and generalization in clinical practice, and could be implemented as a complement to the standard ECG in the clinical diagnosis of myocardial ischemia." @default.
- W4295539897 created "2022-09-14" @default.
- W4295539897 creator A5014779725 @default.
- W4295539897 creator A5035595975 @default.
- W4295539897 creator A5042332666 @default.
- W4295539897 creator A5046078938 @default.
- W4295539897 creator A5048902633 @default.
- W4295539897 creator A5048919230 @default.
- W4295539897 creator A5052537826 @default.
- W4295539897 creator A5073216396 @default.
- W4295539897 creator A5076583315 @default.
- W4295539897 date "2022-11-01" @default.
- W4295539897 modified "2023-10-18" @default.
- W4295539897 title "Early detection of myocardial ischemia in 12‐lead ECG using deterministic learning and ensemble learning" @default.
- W4295539897 cites W1838153045 @default.
- W4295539897 cites W1984595010 @default.
- W4295539897 cites W1998820176 @default.
- W4295539897 cites W1999740279 @default.
- W4295539897 cites W2012030901 @default.
- W4295539897 cites W2022691337 @default.
- W4295539897 cites W2041110545 @default.
- W4295539897 cites W2047181473 @default.
- W4295539897 cites W2055404324 @default.
- W4295539897 cites W2057423886 @default.
- W4295539897 cites W2089520843 @default.
- W4295539897 cites W2090948825 @default.
- W4295539897 cites W2097000718 @default.
- W4295539897 cites W2105811964 @default.
- W4295539897 cites W2113966612 @default.
- W4295539897 cites W2114959844 @default.
- W4295539897 cites W2129413123 @default.
- W4295539897 cites W2160588587 @default.
- W4295539897 cites W2265590503 @default.
- W4295539897 cites W2265982865 @default.
- W4295539897 cites W2512426799 @default.
- W4295539897 cites W2527796983 @default.
- W4295539897 cites W2557463600 @default.
- W4295539897 cites W2620656322 @default.
- W4295539897 cites W2702116941 @default.
- W4295539897 cites W2734657638 @default.
- W4295539897 cites W2773381949 @default.
- W4295539897 cites W2781924583 @default.
- W4295539897 cites W2794228650 @default.
- W4295539897 cites W2796148034 @default.
- W4295539897 cites W2802619004 @default.
- W4295539897 cites W2888543854 @default.
- W4295539897 cites W2899736836 @default.
- W4295539897 cites W2907615080 @default.
- W4295539897 cites W2909387555 @default.
- W4295539897 cites W2913789442 @default.
- W4295539897 cites W2924456201 @default.
- W4295539897 cites W2946327574 @default.
- W4295539897 cites W2947860185 @default.
- W4295539897 cites W2967737346 @default.
- W4295539897 cites W2978730269 @default.
- W4295539897 cites W2978767476 @default.
- W4295539897 cites W2980825080 @default.
- W4295539897 cites W2991806272 @default.
- W4295539897 cites W2999082207 @default.
- W4295539897 cites W3001683732 @default.
- W4295539897 cites W3006339384 @default.
- W4295539897 cites W3033035387 @default.
- W4295539897 cites W3048030988 @default.
- W4295539897 cites W3088459955 @default.
- W4295539897 cites W3092050454 @default.
- W4295539897 cites W3105394014 @default.
- W4295539897 cites W3107063238 @default.
- W4295539897 cites W3153167161 @default.
- W4295539897 cites W3196307935 @default.
- W4295539897 cites W4220754402 @default.
- W4295539897 cites W4230914943 @default.
- W4295539897 cites W4284958790 @default.
- W4295539897 doi "https://doi.org/10.1016/j.cmpb.2022.107124" @default.
- W4295539897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36156437" @default.
- W4295539897 hasPublicationYear "2022" @default.
- W4295539897 type Work @default.
- W4295539897 citedByCount "5" @default.
- W4295539897 countsByYear W42955398972023 @default.
- W4295539897 crossrefType "journal-article" @default.
- W4295539897 hasAuthorship W4295539897A5014779725 @default.
- W4295539897 hasAuthorship W4295539897A5035595975 @default.
- W4295539897 hasAuthorship W4295539897A5042332666 @default.
- W4295539897 hasAuthorship W4295539897A5046078938 @default.
- W4295539897 hasAuthorship W4295539897A5048902633 @default.
- W4295539897 hasAuthorship W4295539897A5048919230 @default.
- W4295539897 hasAuthorship W4295539897A5052537826 @default.
- W4295539897 hasAuthorship W4295539897A5073216396 @default.
- W4295539897 hasAuthorship W4295539897A5076583315 @default.
- W4295539897 hasConcept C11413529 @default.
- W4295539897 hasConcept C119857082 @default.
- W4295539897 hasConcept C119898033 @default.
- W4295539897 hasConcept C126322002 @default.
- W4295539897 hasConcept C153180895 @default.
- W4295539897 hasConcept C154945302 @default.
- W4295539897 hasConcept C3017461755 @default.
- W4295539897 hasConcept C41008148 @default.
- W4295539897 hasConcept C45942800 @default.
- W4295539897 hasConcept C541997718 @default.