Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295540217> ?p ?o ?g. }
- W4295540217 endingPage "2304" @default.
- W4295540217 startingPage "2280" @default.
- W4295540217 abstract "Despite the numerous studies on bearing fault diagnosis based on frequency domain or time-frequency domain analyses, there is a lack of a fair assessment on which method or methods are practically effective in identifying the fault frequencies of damaged bearings in noisy environments. Most methods were developed based on experiments with simple lab test rigs equipped with bearings having manufactured artificial defects, and the signal-to-noise ratio under lab conditions is too ideal to be useful for verifying the effectiveness of a signal processing method. The purpose of this study is to evaluate the effectiveness of advanced signal processing methods applied in a high-speed train operating environment with multi-source interference. In this work, the most advanced signal processing methods (including spectral kurtosis, deconvolution, and mode decomposition) are studied, and the shortcomings of each method are analyzed. Based on the characteristics of high-speed train wheel set bearings (HSTWSBs), the concept of fault characteristic signal-to-noise ratio (FCSNR) is put forward to quantitatively evaluate the fault periodicity intensity, and corresponding improved methods are proposed by combining the FCSNR with existing signal processing methods; all these methods consider the periodic characteristics and impact characteristics of the bearing fault. The simulation signal and actual signals of HSTWSB with natural defects help verify the effectiveness of the proposed methods. Finally, the advantages and disadvantages of the different signal processing methods are objectively evaluated, and the application scope of each method is analyzed and prospected. This study provides a reference and new ideas for the fault diagnosis of HSTWSB and other industrial bearings." @default.
- W4295540217 created "2022-09-14" @default.
- W4295540217 creator A5029531650 @default.
- W4295540217 creator A5046573151 @default.
- W4295540217 creator A5048767783 @default.
- W4295540217 creator A5070369684 @default.
- W4295540217 creator A5070618441 @default.
- W4295540217 creator A5091790043 @default.
- W4295540217 date "2022-09-12" @default.
- W4295540217 modified "2023-09-29" @default.
- W4295540217 title "High-speed train wheel set bearing fault diagnosis and prognostics: evaluation of signal processing methods under multi-source interference" @default.
- W4295540217 cites W1971521993 @default.
- W4295540217 cites W1979117586 @default.
- W4295540217 cites W1984516393 @default.
- W4295540217 cites W1985110006 @default.
- W4295540217 cites W2000982976 @default.
- W4295540217 cites W2007221293 @default.
- W4295540217 cites W2019024593 @default.
- W4295540217 cites W2028119131 @default.
- W4295540217 cites W2046674752 @default.
- W4295540217 cites W2049810669 @default.
- W4295540217 cites W2056700360 @default.
- W4295540217 cites W2077619971 @default.
- W4295540217 cites W2093849451 @default.
- W4295540217 cites W2104882246 @default.
- W4295540217 cites W2114723491 @default.
- W4295540217 cites W2120390927 @default.
- W4295540217 cites W2133059825 @default.
- W4295540217 cites W2140554090 @default.
- W4295540217 cites W232533688 @default.
- W4295540217 cites W2437984376 @default.
- W4295540217 cites W2605606145 @default.
- W4295540217 cites W2751891979 @default.
- W4295540217 cites W2791125525 @default.
- W4295540217 cites W2810598141 @default.
- W4295540217 cites W2839815754 @default.
- W4295540217 cites W2904978872 @default.
- W4295540217 cites W2912736148 @default.
- W4295540217 cites W3015491894 @default.
- W4295540217 cites W3037872117 @default.
- W4295540217 cites W3083262938 @default.
- W4295540217 cites W3119995202 @default.
- W4295540217 cites W3127157191 @default.
- W4295540217 cites W4220990172 @default.
- W4295540217 cites W427289305 @default.
- W4295540217 doi "https://doi.org/10.1177/14759217221122308" @default.
- W4295540217 hasPublicationYear "2022" @default.
- W4295540217 type Work @default.
- W4295540217 citedByCount "2" @default.
- W4295540217 countsByYear W42955402172023 @default.
- W4295540217 crossrefType "journal-article" @default.
- W4295540217 hasAuthorship W4295540217A5029531650 @default.
- W4295540217 hasAuthorship W4295540217A5046573151 @default.
- W4295540217 hasAuthorship W4295540217A5048767783 @default.
- W4295540217 hasAuthorship W4295540217A5070369684 @default.
- W4295540217 hasAuthorship W4295540217A5070618441 @default.
- W4295540217 hasAuthorship W4295540217A5091790043 @default.
- W4295540217 hasConcept C103824480 @default.
- W4295540217 hasConcept C104267543 @default.
- W4295540217 hasConcept C115961682 @default.
- W4295540217 hasConcept C127162648 @default.
- W4295540217 hasConcept C127313418 @default.
- W4295540217 hasConcept C127413603 @default.
- W4295540217 hasConcept C154945302 @default.
- W4295540217 hasConcept C165205528 @default.
- W4295540217 hasConcept C175551986 @default.
- W4295540217 hasConcept C19118579 @default.
- W4295540217 hasConcept C199360897 @default.
- W4295540217 hasConcept C199978012 @default.
- W4295540217 hasConcept C24326235 @default.
- W4295540217 hasConcept C2779843651 @default.
- W4295540217 hasConcept C31972630 @default.
- W4295540217 hasConcept C32022120 @default.
- W4295540217 hasConcept C41008148 @default.
- W4295540217 hasConcept C76155785 @default.
- W4295540217 hasConcept C84462506 @default.
- W4295540217 hasConcept C99498987 @default.
- W4295540217 hasConceptScore W4295540217C103824480 @default.
- W4295540217 hasConceptScore W4295540217C104267543 @default.
- W4295540217 hasConceptScore W4295540217C115961682 @default.
- W4295540217 hasConceptScore W4295540217C127162648 @default.
- W4295540217 hasConceptScore W4295540217C127313418 @default.
- W4295540217 hasConceptScore W4295540217C127413603 @default.
- W4295540217 hasConceptScore W4295540217C154945302 @default.
- W4295540217 hasConceptScore W4295540217C165205528 @default.
- W4295540217 hasConceptScore W4295540217C175551986 @default.
- W4295540217 hasConceptScore W4295540217C19118579 @default.
- W4295540217 hasConceptScore W4295540217C199360897 @default.
- W4295540217 hasConceptScore W4295540217C199978012 @default.
- W4295540217 hasConceptScore W4295540217C24326235 @default.
- W4295540217 hasConceptScore W4295540217C2779843651 @default.
- W4295540217 hasConceptScore W4295540217C31972630 @default.
- W4295540217 hasConceptScore W4295540217C32022120 @default.
- W4295540217 hasConceptScore W4295540217C41008148 @default.
- W4295540217 hasConceptScore W4295540217C76155785 @default.
- W4295540217 hasConceptScore W4295540217C84462506 @default.
- W4295540217 hasConceptScore W4295540217C99498987 @default.
- W4295540217 hasFunder F4320321001 @default.