Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295678432> ?p ?o ?g. }
- W4295678432 endingPage "517" @default.
- W4295678432 startingPage "506" @default.
- W4295678432 abstract "A clinical study regarding the potential of range verification in proton therapy (PT) by prompt gamma imaging (PGI) is carried out at our institution. Manual interpretation of the detected spot-wise range shift information is time-consuming, highly complex, and therefore not feasible in a broad routine application.Here, we present an approach to automatically detect and classify treatment deviations in realistically simulated PGI data for head-and-neck cancer (HNC) treatments using convolutional neural networks (CNNs) and conventional machine learning (ML) approaches.For 12 HNC patients and 1 anthropomorphic head phantom (n = 13), pencil beam scanning (PBS) treatment plans were generated, and 1 field per plan was assumed to be monitored with a PGI slit camera system. In total, 386 scenarios resembling different relevant or non-relevant treatment deviations were simulated on planning and control CTs and manually classified into 7 classes: non-relevant changes (NR) and relevant changes (RE) triggering treatment intervention due to range prediction errors (±RP), setup errors in beam direction (±SE), anatomical changes (AC), or a combination of such errors (CB). PBS spots with reliable PGI information were considered with their nominal Bragg peak position for the generation of two 3D spatial maps of 16 × 16 × 16 voxels containing PGI-determined range shift and proton number information. Three complexity levels of simulated PGI data were investigated: (I) optimal PGI data, (II) realistic PGI data with simulated Poisson noise based on the locally delivered proton number, and (III) realistic PGI data with an additional positioning uncertainty of the slit camera following an experimentally determined distribution. For each complexity level, 3D-CNNs were trained on a data subset (n = 9) using patient-wise leave-one-out cross-validation and tested on an independent test cohort (n = 4). Both the binary task of detecting RE and the multi-class task of classifying the underlying error source were investigated. Similarly, four different conventional ML classifiers (logistic regression, multilayer perceptron, random forest, and support vector machine) were trained using five previously established handcrafted features extracted from the PGI data and used for performance comparison.On the test data, the CNN ensemble achieved a binary accuracy of 0.95, 0.96, and 0.93 and a multi-class accuracy of 0.83, 0.81, and 0.76 for the complexity levels (I), (II), and (III), respectively. In the case of binary classification, the CNN ensemble detected treatment deviations in the most realistic scenario with a sensitivity of 0.95 and a specificity of 0.88. The best performing ML classifiers showed a similar test performance.This study demonstrates that CNNs can reliably detect relevant changes in realistically simulated PGI data and classify most of the underlying sources of treatment deviations. The CNNs extracted meaningful features from the PGI data with a performance comparable to ML classifiers trained on previously established handcrafted features. These results highlight the potential of a reliable, automatic interpretation of PGI data for treatment verification, which is highly desired for a broad clinical application and a prerequisite for the inclusion of PGI in an automated feedback loop for online adaptive PT." @default.
- W4295678432 created "2022-09-14" @default.
- W4295678432 creator A5002412374 @default.
- W4295678432 creator A5012449355 @default.
- W4295678432 creator A5030946225 @default.
- W4295678432 creator A5041111781 @default.
- W4295678432 creator A5050270794 @default.
- W4295678432 creator A5056032448 @default.
- W4295678432 creator A5061093685 @default.
- W4295678432 date "2022-11-29" @default.
- W4295678432 modified "2023-09-27" @default.
- W4295678432 title "Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data" @default.
- W4295678432 cites W2011307344 @default.
- W4295678432 cites W2035306925 @default.
- W4295678432 cites W2050238462 @default.
- W4295678432 cites W2112796928 @default.
- W4295678432 cites W2536323247 @default.
- W4295678432 cites W2610283735 @default.
- W4295678432 cites W2744561640 @default.
- W4295678432 cites W2766176355 @default.
- W4295678432 cites W2908351396 @default.
- W4295678432 cites W2949676527 @default.
- W4295678432 cites W2991670061 @default.
- W4295678432 cites W2995564641 @default.
- W4295678432 cites W3042421123 @default.
- W4295678432 cites W3047807902 @default.
- W4295678432 cites W3088196347 @default.
- W4295678432 cites W3180846119 @default.
- W4295678432 doi "https://doi.org/10.1002/mp.15975" @default.
- W4295678432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36102783" @default.
- W4295678432 hasPublicationYear "2022" @default.
- W4295678432 type Work @default.
- W4295678432 citedByCount "2" @default.
- W4295678432 countsByYear W42956784322023 @default.
- W4295678432 crossrefType "journal-article" @default.
- W4295678432 hasAuthorship W4295678432A5002412374 @default.
- W4295678432 hasAuthorship W4295678432A5012449355 @default.
- W4295678432 hasAuthorship W4295678432A5030946225 @default.
- W4295678432 hasAuthorship W4295678432A5041111781 @default.
- W4295678432 hasAuthorship W4295678432A5050270794 @default.
- W4295678432 hasAuthorship W4295678432A5056032448 @default.
- W4295678432 hasAuthorship W4295678432A5061093685 @default.
- W4295678432 hasBestOaLocation W42956784321 @default.
- W4295678432 hasConcept C104293457 @default.
- W4295678432 hasConcept C120665830 @default.
- W4295678432 hasConcept C121332964 @default.
- W4295678432 hasConcept C126838900 @default.
- W4295678432 hasConcept C134949993 @default.
- W4295678432 hasConcept C153180895 @default.
- W4295678432 hasConcept C154945302 @default.
- W4295678432 hasConcept C159985019 @default.
- W4295678432 hasConcept C168834538 @default.
- W4295678432 hasConcept C192562407 @default.
- W4295678432 hasConcept C201645570 @default.
- W4295678432 hasConcept C204323151 @default.
- W4295678432 hasConcept C2775881188 @default.
- W4295678432 hasConcept C2779244869 @default.
- W4295678432 hasConcept C2780944729 @default.
- W4295678432 hasConcept C2989005 @default.
- W4295678432 hasConcept C31601959 @default.
- W4295678432 hasConcept C41008148 @default.
- W4295678432 hasConcept C509974204 @default.
- W4295678432 hasConcept C54170458 @default.
- W4295678432 hasConcept C71924100 @default.
- W4295678432 hasConcept C81363708 @default.
- W4295678432 hasConceptScore W4295678432C104293457 @default.
- W4295678432 hasConceptScore W4295678432C120665830 @default.
- W4295678432 hasConceptScore W4295678432C121332964 @default.
- W4295678432 hasConceptScore W4295678432C126838900 @default.
- W4295678432 hasConceptScore W4295678432C134949993 @default.
- W4295678432 hasConceptScore W4295678432C153180895 @default.
- W4295678432 hasConceptScore W4295678432C154945302 @default.
- W4295678432 hasConceptScore W4295678432C159985019 @default.
- W4295678432 hasConceptScore W4295678432C168834538 @default.
- W4295678432 hasConceptScore W4295678432C192562407 @default.
- W4295678432 hasConceptScore W4295678432C201645570 @default.
- W4295678432 hasConceptScore W4295678432C204323151 @default.
- W4295678432 hasConceptScore W4295678432C2775881188 @default.
- W4295678432 hasConceptScore W4295678432C2779244869 @default.
- W4295678432 hasConceptScore W4295678432C2780944729 @default.
- W4295678432 hasConceptScore W4295678432C2989005 @default.
- W4295678432 hasConceptScore W4295678432C31601959 @default.
- W4295678432 hasConceptScore W4295678432C41008148 @default.
- W4295678432 hasConceptScore W4295678432C509974204 @default.
- W4295678432 hasConceptScore W4295678432C54170458 @default.
- W4295678432 hasConceptScore W4295678432C71924100 @default.
- W4295678432 hasConceptScore W4295678432C81363708 @default.
- W4295678432 hasIssue "1" @default.
- W4295678432 hasLocation W42956784321 @default.
- W4295678432 hasLocation W42956784322 @default.
- W4295678432 hasOpenAccess W4295678432 @default.
- W4295678432 hasPrimaryLocation W42956784321 @default.
- W4295678432 hasRelatedWork W1645520115 @default.
- W4295678432 hasRelatedWork W2078113378 @default.
- W4295678432 hasRelatedWork W2584492806 @default.
- W4295678432 hasRelatedWork W2756967272 @default.
- W4295678432 hasRelatedWork W2904604170 @default.
- W4295678432 hasRelatedWork W2932822888 @default.