Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295681567> ?p ?o ?g. }
- W4295681567 endingPage "107131" @default.
- W4295681567 startingPage "107131" @default.
- W4295681567 abstract "As a nonlinear framework in dynamical system analysis, chaotic approaches are mainly applied to evolve the complexity of biological systems. Due to the chaotic nature of the cardiovascular systems, the nonlinear features can intuitively provide a reliable framework in blood pressure (BP) estimation. Cuffless BP estimation is usually carried out by establishing deep neural network models estimating the BP values through machine-learned features of photoplethysmogram (PPG) signals.In this study, a novel parallel deep architecture is proposed to handle the machine-learned and chaotic features of PPG signals in estimating the actual BP values. The chaotic handcrafted features were the signal properties associated with the Poincare sections in the phase space and the recurrence plot-based measures called recurrence quantification analysis (RQA). Moreover, the measures quantifying the nonlinear properties of the temporal sequences such as correlation dimension, fractal dimension, Lyapunov exponent, and entropy-based quantities were also employed. The parallel architecture not only embedded the chaotic nature of PPG signals but also provided a facility to include the pseudo-periodic variations of PPGs by utilizing a concatenating layer.Our framework was examined on the public dataset, namely, Multi-Parameter Intelligent in Intensive Care II contained the recording of PPG, ECG and arterial blood pressure. The performance of the employed handcrafted features in distinguishing between the levels of BP values was investigated based on Spearman's statistics. In addition, our proposed scheme is evaluated in terms of Pearson's correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The best performance was achieved when the employed handcrafted features accompanied by PPG sequences were applied to the parallel deep network. In particular, the values of R, RMSE, and MAE were obtained 0.9529, 2.76 mmHg, and 1.73 mmHg for diastolic BP, and 0.9444, 6.18 mmHg, and 3.8 mmHg for systolic BP, respectively. Moreover, based on the requirements of the standards set by the British Hypertension Society (BHS), the proposed scheme achieved a grade of A.Our proposed scheme outperformed the state-of-the-art BP estimation methods. In addition, the results confirmed that the concatenation of the PPG-related machine-learned and nonlinear handcrafted features can be properly applied in continuous BP monitoring." @default.
- W4295681567 created "2022-09-14" @default.
- W4295681567 creator A5022805440 @default.
- W4295681567 creator A5026169297 @default.
- W4295681567 creator A5037947408 @default.
- W4295681567 creator A5049122000 @default.
- W4295681567 date "2022-11-01" @default.
- W4295681567 modified "2023-09-27" @default.
- W4295681567 title "Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network" @default.
- W4295681567 cites W2015588778 @default.
- W4295681567 cites W2040704490 @default.
- W4295681567 cites W2046788142 @default.
- W4295681567 cites W2060540122 @default.
- W4295681567 cites W2081681829 @default.
- W4295681567 cites W2086315826 @default.
- W4295681567 cites W2431637923 @default.
- W4295681567 cites W2527688620 @default.
- W4295681567 cites W2749353905 @default.
- W4295681567 cites W2753097180 @default.
- W4295681567 cites W2753810459 @default.
- W4295681567 cites W2766445546 @default.
- W4295681567 cites W2796697326 @default.
- W4295681567 cites W2802348097 @default.
- W4295681567 cites W2885481778 @default.
- W4295681567 cites W2888894984 @default.
- W4295681567 cites W2889504373 @default.
- W4295681567 cites W2893396487 @default.
- W4295681567 cites W2906624315 @default.
- W4295681567 cites W2916816078 @default.
- W4295681567 cites W2920258695 @default.
- W4295681567 cites W2942918465 @default.
- W4295681567 cites W2963712527 @default.
- W4295681567 cites W2994652673 @default.
- W4295681567 cites W2998223455 @default.
- W4295681567 cites W3007693641 @default.
- W4295681567 cites W3015201783 @default.
- W4295681567 cites W3016104703 @default.
- W4295681567 cites W3016504312 @default.
- W4295681567 cites W3021468941 @default.
- W4295681567 cites W3028487170 @default.
- W4295681567 cites W3037304592 @default.
- W4295681567 cites W3089500187 @default.
- W4295681567 cites W3105276629 @default.
- W4295681567 cites W3109625451 @default.
- W4295681567 cites W3133816309 @default.
- W4295681567 cites W3135184486 @default.
- W4295681567 cites W3151648464 @default.
- W4295681567 cites W3164461680 @default.
- W4295681567 cites W3170604628 @default.
- W4295681567 cites W3179514974 @default.
- W4295681567 cites W3181506921 @default.
- W4295681567 cites W3192502370 @default.
- W4295681567 cites W3199799781 @default.
- W4295681567 cites W4224217554 @default.
- W4295681567 doi "https://doi.org/10.1016/j.cmpb.2022.107131" @default.
- W4295681567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36137326" @default.
- W4295681567 hasPublicationYear "2022" @default.
- W4295681567 type Work @default.
- W4295681567 citedByCount "2" @default.
- W4295681567 countsByYear W42956815672022 @default.
- W4295681567 countsByYear W42956815672023 @default.
- W4295681567 crossrefType "journal-article" @default.
- W4295681567 hasAuthorship W4295681567A5022805440 @default.
- W4295681567 hasAuthorship W4295681567A5026169297 @default.
- W4295681567 hasAuthorship W4295681567A5037947408 @default.
- W4295681567 hasAuthorship W4295681567A5049122000 @default.
- W4295681567 hasConcept C105795698 @default.
- W4295681567 hasConcept C106131492 @default.
- W4295681567 hasConcept C110601934 @default.
- W4295681567 hasConcept C11413529 @default.
- W4295681567 hasConcept C116390426 @default.
- W4295681567 hasConcept C121332964 @default.
- W4295681567 hasConcept C134306372 @default.
- W4295681567 hasConcept C139945424 @default.
- W4295681567 hasConcept C153180895 @default.
- W4295681567 hasConcept C154945302 @default.
- W4295681567 hasConcept C158622935 @default.
- W4295681567 hasConcept C164380108 @default.
- W4295681567 hasConcept C191544260 @default.
- W4295681567 hasConcept C26546657 @default.
- W4295681567 hasConcept C2777052490 @default.
- W4295681567 hasConcept C2780092901 @default.
- W4295681567 hasConcept C31972630 @default.
- W4295681567 hasConcept C33923547 @default.
- W4295681567 hasConcept C40636538 @default.
- W4295681567 hasConcept C41008148 @default.
- W4295681567 hasConcept C50644808 @default.
- W4295681567 hasConcept C55078378 @default.
- W4295681567 hasConcept C62520636 @default.
- W4295681567 hasConcept C86859247 @default.
- W4295681567 hasConceptScore W4295681567C105795698 @default.
- W4295681567 hasConceptScore W4295681567C106131492 @default.
- W4295681567 hasConceptScore W4295681567C110601934 @default.
- W4295681567 hasConceptScore W4295681567C11413529 @default.
- W4295681567 hasConceptScore W4295681567C116390426 @default.
- W4295681567 hasConceptScore W4295681567C121332964 @default.
- W4295681567 hasConceptScore W4295681567C134306372 @default.
- W4295681567 hasConceptScore W4295681567C139945424 @default.