Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295693221> ?p ?o ?g. }
- W4295693221 endingPage "107620" @default.
- W4295693221 startingPage "107620" @default.
- W4295693221 abstract "Multivariate regression models are widely used in various fields for fitting multiple responses. In this paper, we proposed a sparse Laplacian shrinkage estimator for the high-dimensional multivariate regression models. We consider two graphical structures among predictors and responses. The proposed method explores the regression relationship allowing the predictors and responses derived from different multivariate normal distributions with general covariance matrices. In practice, the correlations within data are often complex and interact with each other based on the regression function. The proposed method solves this problem by building a structured penalty to encourage the shared structure between the graphs and the regression coefficients. We provide theoretical results under reasonable conditions and discuss the related algorithm. The effectiveness of the proposed method is demonstrated in a variety of simulations as well as an application to the index tracking problem in the stock market." @default.
- W4295693221 created "2022-09-14" @default.
- W4295693221 creator A5013438405 @default.
- W4295693221 creator A5026007288 @default.
- W4295693221 creator A5033081142 @default.
- W4295693221 date "2023-02-01" @default.
- W4295693221 modified "2023-10-18" @default.
- W4295693221 title "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures" @default.
- W4295693221 cites W1532814032 @default.
- W4295693221 cites W1560240297 @default.
- W4295693221 cites W1968289946 @default.
- W4295693221 cites W1987371344 @default.
- W4295693221 cites W1989727964 @default.
- W4295693221 cites W2009099296 @default.
- W4295693221 cites W2018747370 @default.
- W4295693221 cites W2039530176 @default.
- W4295693221 cites W2056636001 @default.
- W4295693221 cites W2081297271 @default.
- W4295693221 cites W2081531193 @default.
- W4295693221 cites W2081746825 @default.
- W4295693221 cites W2084847607 @default.
- W4295693221 cites W2097581234 @default.
- W4295693221 cites W2102995854 @default.
- W4295693221 cites W2116561374 @default.
- W4295693221 cites W2116581043 @default.
- W4295693221 cites W2125536150 @default.
- W4295693221 cites W2132555912 @default.
- W4295693221 cites W2134056163 @default.
- W4295693221 cites W2138019504 @default.
- W4295693221 cites W2141366416 @default.
- W4295693221 cites W2148289138 @default.
- W4295693221 cites W2159514083 @default.
- W4295693221 cites W2204185640 @default.
- W4295693221 cites W2263574617 @default.
- W4295693221 cites W2272001694 @default.
- W4295693221 cites W2276809835 @default.
- W4295693221 cites W2751495563 @default.
- W4295693221 cites W2760945190 @default.
- W4295693221 cites W2765335234 @default.
- W4295693221 cites W2938055490 @default.
- W4295693221 cites W3101040439 @default.
- W4295693221 cites W3102389945 @default.
- W4295693221 cites W3106266785 @default.
- W4295693221 cites W3147365367 @default.
- W4295693221 cites W4294541781 @default.
- W4295693221 doi "https://doi.org/10.1016/j.csda.2022.107620" @default.
- W4295693221 hasPublicationYear "2023" @default.
- W4295693221 type Work @default.
- W4295693221 citedByCount "1" @default.
- W4295693221 countsByYear W42956932212023 @default.
- W4295693221 crossrefType "journal-article" @default.
- W4295693221 hasAuthorship W4295693221A5013438405 @default.
- W4295693221 hasAuthorship W4295693221A5026007288 @default.
- W4295693221 hasAuthorship W4295693221A5033081142 @default.
- W4295693221 hasConcept C105795698 @default.
- W4295693221 hasConcept C127413603 @default.
- W4295693221 hasConcept C136764020 @default.
- W4295693221 hasConcept C149782125 @default.
- W4295693221 hasConcept C153180895 @default.
- W4295693221 hasConcept C154945302 @default.
- W4295693221 hasConcept C155846161 @default.
- W4295693221 hasConcept C161584116 @default.
- W4295693221 hasConcept C170154142 @default.
- W4295693221 hasConcept C180145272 @default.
- W4295693221 hasConcept C18555067 @default.
- W4295693221 hasConcept C201995342 @default.
- W4295693221 hasConcept C33923547 @default.
- W4295693221 hasConcept C37616216 @default.
- W4295693221 hasConcept C38180746 @default.
- W4295693221 hasConcept C41008148 @default.
- W4295693221 hasConcept C96250715 @default.
- W4295693221 hasConceptScore W4295693221C105795698 @default.
- W4295693221 hasConceptScore W4295693221C127413603 @default.
- W4295693221 hasConceptScore W4295693221C136764020 @default.
- W4295693221 hasConceptScore W4295693221C149782125 @default.
- W4295693221 hasConceptScore W4295693221C153180895 @default.
- W4295693221 hasConceptScore W4295693221C154945302 @default.
- W4295693221 hasConceptScore W4295693221C155846161 @default.
- W4295693221 hasConceptScore W4295693221C161584116 @default.
- W4295693221 hasConceptScore W4295693221C170154142 @default.
- W4295693221 hasConceptScore W4295693221C180145272 @default.
- W4295693221 hasConceptScore W4295693221C18555067 @default.
- W4295693221 hasConceptScore W4295693221C201995342 @default.
- W4295693221 hasConceptScore W4295693221C33923547 @default.
- W4295693221 hasConceptScore W4295693221C37616216 @default.
- W4295693221 hasConceptScore W4295693221C38180746 @default.
- W4295693221 hasConceptScore W4295693221C41008148 @default.
- W4295693221 hasConceptScore W4295693221C96250715 @default.
- W4295693221 hasFunder F4320321001 @default.
- W4295693221 hasLocation W42956932211 @default.
- W4295693221 hasOpenAccess W4295693221 @default.
- W4295693221 hasPrimaryLocation W42956932211 @default.
- W4295693221 hasRelatedWork W1980905932 @default.
- W4295693221 hasRelatedWork W2002240385 @default.
- W4295693221 hasRelatedWork W2119420496 @default.
- W4295693221 hasRelatedWork W2137983966 @default.
- W4295693221 hasRelatedWork W2622157825 @default.
- W4295693221 hasRelatedWork W4220961233 @default.