Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295733420> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4295733420 abstract "3D printing could revolutionize manufacturing through local and on‐demand production while enabling uniquely complex and custom products. However, 3D printing's propensity for production errors prevents autonomous operation and the quality assurance necessary to realize this vision. Human operators cannot continuously monitor or correct errors in real time, while automated approaches predominantly only detect errors. New methodologies correct parameters either offline or with slow response times and poor prediction granularity, limiting their utility. A commonly available 3D printing process metadata is harnessed, alongside the video of the printing process, to build a unique image dataset. Regression models are trained to precisely predict how printing material flow should be altered to correct errors and this should be used to build a fast control loop capable of 3D printing parameter discovery and few‐shot correction. Demonstrations show that the system can learn optimal parameters for unseen complex materials, and achieve rapid error correction on new parts. Similar metadata exists in many manufacturing processes and this approach could enable the adoption of fast data‐driven control systems more widely in manufacturing." @default.
- W4295733420 created "2022-09-15" @default.
- W4295733420 creator A5019886921 @default.
- W4295733420 creator A5026454775 @default.
- W4295733420 date "2022-09-11" @default.
- W4295733420 modified "2023-10-15" @default.
- W4295733420 title "Quantitative and Real‐Time Control of 3D Printing Material Flow Through Deep Learning" @default.
- W4295733420 cites W1825869920 @default.
- W4295733420 cites W2040732657 @default.
- W4295733420 cites W2525560340 @default.
- W4295733420 cites W2528863804 @default.
- W4295733420 cites W2784033758 @default.
- W4295733420 cites W2793435880 @default.
- W4295733420 cites W2796681697 @default.
- W4295733420 cites W2803222156 @default.
- W4295733420 cites W2808460361 @default.
- W4295733420 cites W2890582415 @default.
- W4295733420 cites W2911221784 @default.
- W4295733420 cites W2911458570 @default.
- W4295733420 cites W2941045572 @default.
- W4295733420 cites W2952328294 @default.
- W4295733420 cites W2954715556 @default.
- W4295733420 cites W2967727187 @default.
- W4295733420 cites W2974170186 @default.
- W4295733420 cites W3006516587 @default.
- W4295733420 cites W3027429685 @default.
- W4295733420 cites W3044188019 @default.
- W4295733420 cites W3166337110 @default.
- W4295733420 cites W3183607821 @default.
- W4295733420 cites W3202886177 @default.
- W4295733420 cites W4213377513 @default.
- W4295733420 cites W4229028913 @default.
- W4295733420 doi "https://doi.org/10.1002/aisy.202200153" @default.
- W4295733420 hasPublicationYear "2022" @default.
- W4295733420 type Work @default.
- W4295733420 citedByCount "1" @default.
- W4295733420 countsByYear W42957334202023 @default.
- W4295733420 crossrefType "journal-article" @default.
- W4295733420 hasAuthorship W4295733420A5019886921 @default.
- W4295733420 hasAuthorship W4295733420A5026454775 @default.
- W4295733420 hasBestOaLocation W42957334203 @default.
- W4295733420 hasConcept C111919701 @default.
- W4295733420 hasConcept C115901376 @default.
- W4295733420 hasConcept C127413603 @default.
- W4295733420 hasConcept C13736549 @default.
- W4295733420 hasConcept C155386361 @default.
- W4295733420 hasConcept C177774035 @default.
- W4295733420 hasConcept C199639397 @default.
- W4295733420 hasConcept C207239344 @default.
- W4295733420 hasConcept C41008148 @default.
- W4295733420 hasConcept C524769229 @default.
- W4295733420 hasConcept C78519656 @default.
- W4295733420 hasConcept C79403827 @default.
- W4295733420 hasConcept C93518851 @default.
- W4295733420 hasConcept C98045186 @default.
- W4295733420 hasConceptScore W4295733420C111919701 @default.
- W4295733420 hasConceptScore W4295733420C115901376 @default.
- W4295733420 hasConceptScore W4295733420C127413603 @default.
- W4295733420 hasConceptScore W4295733420C13736549 @default.
- W4295733420 hasConceptScore W4295733420C155386361 @default.
- W4295733420 hasConceptScore W4295733420C177774035 @default.
- W4295733420 hasConceptScore W4295733420C199639397 @default.
- W4295733420 hasConceptScore W4295733420C207239344 @default.
- W4295733420 hasConceptScore W4295733420C41008148 @default.
- W4295733420 hasConceptScore W4295733420C524769229 @default.
- W4295733420 hasConceptScore W4295733420C78519656 @default.
- W4295733420 hasConceptScore W4295733420C79403827 @default.
- W4295733420 hasConceptScore W4295733420C93518851 @default.
- W4295733420 hasConceptScore W4295733420C98045186 @default.
- W4295733420 hasFunder F4320320006 @default.
- W4295733420 hasFunder F4320320241 @default.
- W4295733420 hasFunder F4320322909 @default.
- W4295733420 hasFunder F4320334627 @default.
- W4295733420 hasIssue "11" @default.
- W4295733420 hasLocation W42957334201 @default.
- W4295733420 hasLocation W42957334202 @default.
- W4295733420 hasLocation W42957334203 @default.
- W4295733420 hasLocation W42957334204 @default.
- W4295733420 hasOpenAccess W4295733420 @default.
- W4295733420 hasPrimaryLocation W42957334201 @default.
- W4295733420 hasRelatedWork W1594844924 @default.
- W4295733420 hasRelatedWork W1992807924 @default.
- W4295733420 hasRelatedWork W2057189087 @default.
- W4295733420 hasRelatedWork W2062427795 @default.
- W4295733420 hasRelatedWork W2128472507 @default.
- W4295733420 hasRelatedWork W2159708129 @default.
- W4295733420 hasRelatedWork W2379312607 @default.
- W4295733420 hasRelatedWork W2522741361 @default.
- W4295733420 hasRelatedWork W2801524828 @default.
- W4295733420 hasRelatedWork W3152253630 @default.
- W4295733420 hasVolume "4" @default.
- W4295733420 isParatext "false" @default.
- W4295733420 isRetracted "false" @default.
- W4295733420 workType "article" @default.