Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295763180> ?p ?o ?g. }
- W4295763180 endingPage "103439" @default.
- W4295763180 startingPage "103439" @default.
- W4295763180 abstract "A non-destructive and reliable spectroscopic analysis method was proposed for detecting honey fraud based on Raman spectroscopy and convolutional neural network (CNN). Acacia, litchi and linden honey were adulterated with high fructose corn syrup (HFCS), rice syrup (RS), maltose syrup (MS) and commercial blended syrup (BS) at different concentrations, respectively. Spectra were collected from 60 authentic honeys and 360 adulterated honeys. Dimensionality reduction algorithms provided an overview and visualization of the spectral dataset. The strategy of this study was that the botanical origins and adulteration concentrations of unknown samples were obtained through a combination of qualitative and quantitative models, regardless of the types of honey and contaminant. The CNN classification model and chemometric algorithms achieved more than 99.76% accuracy for honey matrix identification, while the CNN quantitative models kept the coefficients of determination (R2p) and root mean square errors of prediction (RMSEP) above 0.95 and below 4.25, respectively. CNN achieved significantly better performance than chemometric algorithms and met the routine detection requirements of honey. The proposed method provides a promising alternative to combat honey fraud." @default.
- W4295763180 created "2022-09-15" @default.
- W4295763180 creator A5003459479 @default.
- W4295763180 creator A5006651636 @default.
- W4295763180 creator A5011003274 @default.
- W4295763180 creator A5023748379 @default.
- W4295763180 creator A5033640951 @default.
- W4295763180 creator A5058677271 @default.
- W4295763180 creator A5060416973 @default.
- W4295763180 creator A5063525537 @default.
- W4295763180 creator A5091706901 @default.
- W4295763180 date "2022-11-01" @default.
- W4295763180 modified "2023-10-10" @default.
- W4295763180 title "Botanical origin identification and adulteration quantification of honey based on Raman spectroscopy combined with convolutional neural network" @default.
- W4295763180 cites W1187661429 @default.
- W4295763180 cites W1926731616 @default.
- W4295763180 cites W1964171367 @default.
- W4295763180 cites W1988423268 @default.
- W4295763180 cites W2022225931 @default.
- W4295763180 cites W2053764806 @default.
- W4295763180 cites W2235345362 @default.
- W4295763180 cites W2295828015 @default.
- W4295763180 cites W2509493804 @default.
- W4295763180 cites W2549760012 @default.
- W4295763180 cites W2568614653 @default.
- W4295763180 cites W2669468798 @default.
- W4295763180 cites W2747865299 @default.
- W4295763180 cites W2750979410 @default.
- W4295763180 cites W2791112221 @default.
- W4295763180 cites W2806288296 @default.
- W4295763180 cites W2914149393 @default.
- W4295763180 cites W2927442480 @default.
- W4295763180 cites W2933580030 @default.
- W4295763180 cites W2946600959 @default.
- W4295763180 cites W2955252565 @default.
- W4295763180 cites W2970353953 @default.
- W4295763180 cites W2975549027 @default.
- W4295763180 cites W2979783930 @default.
- W4295763180 cites W2996393755 @default.
- W4295763180 cites W2999277653 @default.
- W4295763180 cites W3013423890 @default.
- W4295763180 cites W3021965737 @default.
- W4295763180 cites W3023707159 @default.
- W4295763180 cites W3023878884 @default.
- W4295763180 cites W3036229468 @default.
- W4295763180 cites W3039009971 @default.
- W4295763180 cites W3080646488 @default.
- W4295763180 cites W3081958859 @default.
- W4295763180 cites W3129477466 @default.
- W4295763180 cites W3130951558 @default.
- W4295763180 cites W3138276720 @default.
- W4295763180 cites W3159908420 @default.
- W4295763180 cites W3176881956 @default.
- W4295763180 cites W3210740626 @default.
- W4295763180 cites W4205231432 @default.
- W4295763180 cites W4206622713 @default.
- W4295763180 cites W4220838524 @default.
- W4295763180 cites W4220940158 @default.
- W4295763180 doi "https://doi.org/10.1016/j.vibspec.2022.103439" @default.
- W4295763180 hasPublicationYear "2022" @default.
- W4295763180 type Work @default.
- W4295763180 citedByCount "10" @default.
- W4295763180 countsByYear W42957631802023 @default.
- W4295763180 crossrefType "journal-article" @default.
- W4295763180 hasAuthorship W4295763180A5003459479 @default.
- W4295763180 hasAuthorship W4295763180A5006651636 @default.
- W4295763180 hasAuthorship W4295763180A5011003274 @default.
- W4295763180 hasAuthorship W4295763180A5023748379 @default.
- W4295763180 hasAuthorship W4295763180A5033640951 @default.
- W4295763180 hasAuthorship W4295763180A5058677271 @default.
- W4295763180 hasAuthorship W4295763180A5060416973 @default.
- W4295763180 hasAuthorship W4295763180A5063525537 @default.
- W4295763180 hasAuthorship W4295763180A5091706901 @default.
- W4295763180 hasConcept C153180895 @default.
- W4295763180 hasConcept C154945302 @default.
- W4295763180 hasConcept C185592680 @default.
- W4295763180 hasConcept C2776970464 @default.
- W4295763180 hasConcept C2779018100 @default.
- W4295763180 hasConcept C31903555 @default.
- W4295763180 hasConcept C33923547 @default.
- W4295763180 hasConcept C41008148 @default.
- W4295763180 hasConcept C81363708 @default.
- W4295763180 hasConceptScore W4295763180C153180895 @default.
- W4295763180 hasConceptScore W4295763180C154945302 @default.
- W4295763180 hasConceptScore W4295763180C185592680 @default.
- W4295763180 hasConceptScore W4295763180C2776970464 @default.
- W4295763180 hasConceptScore W4295763180C2779018100 @default.
- W4295763180 hasConceptScore W4295763180C31903555 @default.
- W4295763180 hasConceptScore W4295763180C33923547 @default.
- W4295763180 hasConceptScore W4295763180C41008148 @default.
- W4295763180 hasConceptScore W4295763180C81363708 @default.
- W4295763180 hasLocation W42957631801 @default.
- W4295763180 hasOpenAccess W4295763180 @default.
- W4295763180 hasPrimaryLocation W42957631801 @default.
- W4295763180 hasRelatedWork W2175746458 @default.
- W4295763180 hasRelatedWork W2732542196 @default.
- W4295763180 hasRelatedWork W2738221750 @default.
- W4295763180 hasRelatedWork W2758063741 @default.