Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295778540> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4295778540 abstract "PURPOSE The extensive growth and use of electronic health records (EHRs) and extending medical literature have led to huge opportunities to automate the extraction of relevant clinical information that helps in concise and effective clinical decision support. However, processing such information has traditionally been dependent on labor-intensive processes with human errors such as fatigue, oversight, and interobserver variability. Hence, this study aims at the processing of EHRs and performing multilevel and multiclass classification by fetching dominant characteristic features that are sufficient to detect and differentiate various types of breast lesions. PATIENTS AND METHODS In this study, unstructured EHRs on breast lesions obtained through fine-needle aspiration cytology technique are considered. The raw text was normalized into structured tabular form and converted to scores by performing sentiment analysis that helps to decide the total polarity or class label of the EHR. Supervised machine learning approaches, namely random forest and feed-forward neural network trained using Levenberg-Marquardt training function, are used for classification of the collected EHR data set containing 2,879 records that are split in the ratio of 80:20 as training and testing data sets, respectively. RESULTS Random forest and feed-forward neural network classifiers gave the best performance with an accuracy of 99.36%, an overall receiver operating characteristic-area under the curve of 99.2%, a correlation with ground truth of 98.3%, and a histopathologic correlation of 98.6%. CONCLUSION Natural language processing has huge potential to automate the extraction of clinical features from breast lesions. The proposed multilevel and multiclass classification approach is used to classify 13 different types of breast lesions with 20 different labels into five classes to decide the type of treatment that should be given to patients by a physician or oncologist." @default.
- W4295778540 created "2022-09-15" @default.
- W4295778540 creator A5007385635 @default.
- W4295778540 creator A5055863535 @default.
- W4295778540 creator A5076003216 @default.
- W4295778540 date "2022-09-01" @default.
- W4295778540 modified "2023-09-26" @default.
- W4295778540 title "Natural Language Processing Approaches for Automated Multilevel and Multiclass Classification of Breast Lesions on Free-Text Cytopathology Reports" @default.
- W4295778540 cites W2022777706 @default.
- W4295778540 cites W2149527488 @default.
- W4295778540 cites W2400904618 @default.
- W4295778540 cites W2538286257 @default.
- W4295778540 cites W2606239925 @default.
- W4295778540 cites W2771477360 @default.
- W4295778540 cites W2906053813 @default.
- W4295778540 cites W2914565901 @default.
- W4295778540 cites W2936894186 @default.
- W4295778540 cites W2978612210 @default.
- W4295778540 cites W2979125633 @default.
- W4295778540 cites W2994889604 @default.
- W4295778540 cites W2996928073 @default.
- W4295778540 cites W3085371928 @default.
- W4295778540 doi "https://doi.org/10.1200/cci.22.00036" @default.
- W4295778540 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36103641" @default.
- W4295778540 hasPublicationYear "2022" @default.
- W4295778540 type Work @default.
- W4295778540 citedByCount "0" @default.
- W4295778540 crossrefType "journal-article" @default.
- W4295778540 hasAuthorship W4295778540A5007385635 @default.
- W4295778540 hasAuthorship W4295778540A5055863535 @default.
- W4295778540 hasAuthorship W4295778540A5076003216 @default.
- W4295778540 hasConcept C119857082 @default.
- W4295778540 hasConcept C12267149 @default.
- W4295778540 hasConcept C123860398 @default.
- W4295778540 hasConcept C124101348 @default.
- W4295778540 hasConcept C132964779 @default.
- W4295778540 hasConcept C142724271 @default.
- W4295778540 hasConcept C153180895 @default.
- W4295778540 hasConcept C154945302 @default.
- W4295778540 hasConcept C169258074 @default.
- W4295778540 hasConcept C18823058 @default.
- W4295778540 hasConcept C199360897 @default.
- W4295778540 hasConcept C204321447 @default.
- W4295778540 hasConcept C2778654104 @default.
- W4295778540 hasConcept C41008148 @default.
- W4295778540 hasConcept C50644808 @default.
- W4295778540 hasConcept C58471807 @default.
- W4295778540 hasConcept C71924100 @default.
- W4295778540 hasConceptScore W4295778540C119857082 @default.
- W4295778540 hasConceptScore W4295778540C12267149 @default.
- W4295778540 hasConceptScore W4295778540C123860398 @default.
- W4295778540 hasConceptScore W4295778540C124101348 @default.
- W4295778540 hasConceptScore W4295778540C132964779 @default.
- W4295778540 hasConceptScore W4295778540C142724271 @default.
- W4295778540 hasConceptScore W4295778540C153180895 @default.
- W4295778540 hasConceptScore W4295778540C154945302 @default.
- W4295778540 hasConceptScore W4295778540C169258074 @default.
- W4295778540 hasConceptScore W4295778540C18823058 @default.
- W4295778540 hasConceptScore W4295778540C199360897 @default.
- W4295778540 hasConceptScore W4295778540C204321447 @default.
- W4295778540 hasConceptScore W4295778540C2778654104 @default.
- W4295778540 hasConceptScore W4295778540C41008148 @default.
- W4295778540 hasConceptScore W4295778540C50644808 @default.
- W4295778540 hasConceptScore W4295778540C58471807 @default.
- W4295778540 hasConceptScore W4295778540C71924100 @default.
- W4295778540 hasIssue "6" @default.
- W4295778540 hasLocation W42957785401 @default.
- W4295778540 hasLocation W42957785402 @default.
- W4295778540 hasOpenAccess W4295778540 @default.
- W4295778540 hasPrimaryLocation W42957785401 @default.
- W4295778540 hasRelatedWork W2275058042 @default.
- W4295778540 hasRelatedWork W3107474891 @default.
- W4295778540 hasRelatedWork W3116896278 @default.
- W4295778540 hasRelatedWork W3174196512 @default.
- W4295778540 hasRelatedWork W4225360065 @default.
- W4295778540 hasRelatedWork W4282839226 @default.
- W4295778540 hasRelatedWork W4283016678 @default.
- W4295778540 hasRelatedWork W4295778540 @default.
- W4295778540 hasRelatedWork W4322008322 @default.
- W4295778540 hasRelatedWork W4322727400 @default.
- W4295778540 isParatext "false" @default.
- W4295778540 isRetracted "false" @default.
- W4295778540 workType "article" @default.