Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295789375> ?p ?o ?g. }
- W4295789375 endingPage "2606" @default.
- W4295789375 startingPage "2594" @default.
- W4295789375 abstract "Nowadays, more and more workflows with different computing requirements are migrated to clouds and executed with cloud resources. In this work, we study the problem of stochastic multi-workflows scheduling in clouds and formalize this problem as an optimization problem that is NP-hard. To solve this problem, an efficient stochastic multi-workflows dynamic scheduling algorithm called SMWDSA is designed to schedule multi-workflows with deadline constraints for optimizing multi-workflows scheduling cost. The proposed SMWDSA consists of three stages including multi-workflows preprocessing, multi-workflow scheduling and scheduling feedback. In SMWDSA, a novel task sub-deadlines assignment stretagy is design to assign the task sub-deadlines to each task of multi-workflows for meeting workflow deadline constraints. Then, we propose a task scheduling method based on the minimal time slot availability to execution task for minimizing workflow scheduling cost while meetingt workflow deadlines. Finally, a scheduling feedback strategy is adopted to update the priorities and sub-deadlines of unscheduled tasks, for further minimizing workflow scheduling cost. We conduct the experiments using both synthetic data and real-world data to evaluate SMWDSA. The results demonstrate the superiority of SMWDSA as compared with the state-of-the-art algorithms. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —Workflow scheduling in clouds is significantly challenging due to not only the large scale of workflows but also the elasticity and heterogeneity of cloud resources. Moreover, minimizing workflow scheduling cost and satisfying workflow deadlines are two critical issues in scheduling with cloud resources, especially the uncertainty of workflow arrive time and task execution time are considered. To meet workflow deadlines, it is an effective strategy to decompose workflow deadline constraints into task sub-deadline constraints. To minimize the workflow scheduling cost, each task in a workflow needs to be assigned to their most suitable VMs for execution. This article presents a novel workflow scheduling algorithm to schedule stochastic multi-workflows in clouds for optimizing multi-workflows scheduling cost and meeting workflows deadlines. This algorithm obtains the task sub-deadline constraints based on the characteristics of workflows for meeting the worklfow deadline constraint. Under the premise of meeting task deadlines, it schedules tasks to a VM with minimum the slot time, for minimizing the cost. Case studies based on well-known real-world workflows data sets suggest that it outperforms traditional ones in terms of success and cost of multi-workflows scheduling. It can thus aid the design and optimization of multi-workflows scheduling in a cloud environment. It can help practitioners better manage the scheduling cost and performance of real-world applications built upon cloud services." @default.
- W4295789375 created "2022-09-15" @default.
- W4295789375 creator A5023947420 @default.
- W4295789375 creator A5058268261 @default.
- W4295789375 creator A5064231378 @default.
- W4295789375 creator A5074201900 @default.
- W4295789375 date "2023-10-01" @default.
- W4295789375 modified "2023-10-11" @default.
- W4295789375 title "Dynamic Scheduling Stochastic Multiworkflows With Deadline Constraints in Clouds" @default.
- W4295789375 cites W1964811265 @default.
- W4295789375 cites W1986421100 @default.
- W4295789375 cites W2028351695 @default.
- W4295789375 cites W2032728524 @default.
- W4295789375 cites W2088723799 @default.
- W4295789375 cites W2142442427 @default.
- W4295789375 cites W2148325535 @default.
- W4295789375 cites W2149294210 @default.
- W4295789375 cites W2327866891 @default.
- W4295789375 cites W2339254261 @default.
- W4295789375 cites W2342704304 @default.
- W4295789375 cites W2343690045 @default.
- W4295789375 cites W2526174145 @default.
- W4295789375 cites W2529748896 @default.
- W4295789375 cites W2562009330 @default.
- W4295789375 cites W2579799105 @default.
- W4295789375 cites W2580477754 @default.
- W4295789375 cites W2586848540 @default.
- W4295789375 cites W2611469001 @default.
- W4295789375 cites W2744120858 @default.
- W4295789375 cites W2758953455 @default.
- W4295789375 cites W2784017215 @default.
- W4295789375 cites W2803970949 @default.
- W4295789375 cites W2809040320 @default.
- W4295789375 cites W2810048489 @default.
- W4295789375 cites W2889171665 @default.
- W4295789375 cites W2922587577 @default.
- W4295789375 cites W2944597265 @default.
- W4295789375 cites W2946670790 @default.
- W4295789375 cites W2954522583 @default.
- W4295789375 cites W2963375128 @default.
- W4295789375 cites W2963427297 @default.
- W4295789375 cites W2968986602 @default.
- W4295789375 cites W2981604716 @default.
- W4295789375 cites W3000638052 @default.
- W4295789375 cites W3042500778 @default.
- W4295789375 cites W3184617161 @default.
- W4295789375 cites W3192092920 @default.
- W4295789375 cites W3212584892 @default.
- W4295789375 cites W3214181042 @default.
- W4295789375 cites W4281553589 @default.
- W4295789375 doi "https://doi.org/10.1109/tase.2022.3204313" @default.
- W4295789375 hasPublicationYear "2023" @default.
- W4295789375 type Work @default.
- W4295789375 citedByCount "0" @default.
- W4295789375 crossrefType "journal-article" @default.
- W4295789375 hasAuthorship W4295789375A5023947420 @default.
- W4295789375 hasAuthorship W4295789375A5058268261 @default.
- W4295789375 hasAuthorship W4295789375A5064231378 @default.
- W4295789375 hasAuthorship W4295789375A5074201900 @default.
- W4295789375 hasConcept C107568181 @default.
- W4295789375 hasConcept C111919701 @default.
- W4295789375 hasConcept C119948110 @default.
- W4295789375 hasConcept C120314980 @default.
- W4295789375 hasConcept C126255220 @default.
- W4295789375 hasConcept C177212765 @default.
- W4295789375 hasConcept C206729178 @default.
- W4295789375 hasConcept C31689143 @default.
- W4295789375 hasConcept C33923547 @default.
- W4295789375 hasConcept C41008148 @default.
- W4295789375 hasConcept C68387754 @default.
- W4295789375 hasConcept C77088390 @default.
- W4295789375 hasConcept C79974875 @default.
- W4295789375 hasConceptScore W4295789375C107568181 @default.
- W4295789375 hasConceptScore W4295789375C111919701 @default.
- W4295789375 hasConceptScore W4295789375C119948110 @default.
- W4295789375 hasConceptScore W4295789375C120314980 @default.
- W4295789375 hasConceptScore W4295789375C126255220 @default.
- W4295789375 hasConceptScore W4295789375C177212765 @default.
- W4295789375 hasConceptScore W4295789375C206729178 @default.
- W4295789375 hasConceptScore W4295789375C31689143 @default.
- W4295789375 hasConceptScore W4295789375C33923547 @default.
- W4295789375 hasConceptScore W4295789375C41008148 @default.
- W4295789375 hasConceptScore W4295789375C68387754 @default.
- W4295789375 hasConceptScore W4295789375C77088390 @default.
- W4295789375 hasConceptScore W4295789375C79974875 @default.
- W4295789375 hasFunder F4320321001 @default.
- W4295789375 hasFunder F4320335777 @default.
- W4295789375 hasIssue "4" @default.
- W4295789375 hasLocation W42957893751 @default.
- W4295789375 hasOpenAccess W4295789375 @default.
- W4295789375 hasPrimaryLocation W42957893751 @default.
- W4295789375 hasRelatedWork W1545991362 @default.
- W4295789375 hasRelatedWork W2106332846 @default.
- W4295789375 hasRelatedWork W2167574351 @default.
- W4295789375 hasRelatedWork W2225350526 @default.
- W4295789375 hasRelatedWork W2372008037 @default.
- W4295789375 hasRelatedWork W2545511463 @default.
- W4295789375 hasRelatedWork W2978148977 @default.