Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295808910> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4295808910 endingPage "1537" @default.
- W4295808910 startingPage "1529" @default.
- W4295808910 abstract "Early studies have demonstrated the potential of deep learning in bringing revolutionary changes in medical analysis. However, it is unknown which deep learning based diagnostic pattern is more effective for differentiating malignant and benign breast lesions (BLs) and can assist radiologists to reduce unnecessary biopsies.A total of 506 malignant BLs and 557 benign BLs were enrolled in this study after excluding incomplete ultrasound images. 396 malignant BLs and 447 benign BLs were included in the training cohort while 110 malignant and 110 benign BLs were included in the validation cohort. All BLs in the training and validation cohort were biopsy-proven. The most common convolutional neural networks (VGG-16 and VGG-19) were applied to identify malignant and benign BLs using grey-scale ultrasound images. Two radiologists determined the malignant (suggestion for biopsy) and benign (suggestion for follow-up) BLs with a 2-step reading session. The first step was based on conventional ultrasound (US) images alone to make a biopsy or follow-up decision. The second step was to take deep learning results into account for the decision adjustment. If a deep learning result of a first-classified benign BL was above the cut-off value, then it was re-classified as malignant.In terms of area under the curve (AUC), the VGG-19 model yielded the best diagnostic performance in both training [0.939, 95% confidence interval (CI): 0.924-0.954] and testing dataset (0.959, 95% CI: 0.937-0.982). With the aid of deep learning models, the AUC of radiologists improved from 0.805 (95% CI: 0.744-0.865) to 0.827 (95% CI: 0.771-0.875, VGG-16) and 0.914 (95% CI: 0.871-0.957, VGG-19). The unnecessary biopsies decreased from 10.0% (11/110) to 8.2% (9/110) (assisted by VGG-16) and 0.9% (1/110) (assisted by VGG-19).The application of deep learning patterns in breast US may improve the diagnostic performance of radiologists by offering a second opinion. And thus, the assist of deep learning algorithm can considerably reduce the unnecessary biopsy rate in the clinical management of breast lesions." @default.
- W4295808910 created "2022-09-15" @default.
- W4295808910 creator A5043318864 @default.
- W4295808910 creator A5043650123 @default.
- W4295808910 creator A5043844658 @default.
- W4295808910 creator A5044379017 @default.
- W4295808910 creator A5073692772 @default.
- W4295808910 date "2022-09-01" @default.
- W4295808910 modified "2023-10-01" @default.
- W4295808910 title "A deep learning-based diagnostic pattern for ultrasound breast imaging: can it reduce unnecessary biopsy?" @default.
- W4295808910 cites W2021731869 @default.
- W4295808910 cites W2084548139 @default.
- W4295808910 cites W2097036415 @default.
- W4295808910 cites W2582617788 @default.
- W4295808910 cites W2603963723 @default.
- W4295808910 cites W2727347885 @default.
- W4295808910 cites W2767128594 @default.
- W4295808910 cites W2939142770 @default.
- W4295808910 cites W2953914369 @default.
- W4295808910 cites W2984156615 @default.
- W4295808910 cites W3033158784 @default.
- W4295808910 cites W3121120936 @default.
- W4295808910 cites W3134814665 @default.
- W4295808910 cites W3135380477 @default.
- W4295808910 cites W3161558287 @default.
- W4295808910 cites W3170210531 @default.
- W4295808910 cites W3175966289 @default.
- W4295808910 cites W4200396924 @default.
- W4295808910 doi "https://doi.org/10.21037/gs-22-473" @default.
- W4295808910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36221270" @default.
- W4295808910 hasPublicationYear "2022" @default.
- W4295808910 type Work @default.
- W4295808910 citedByCount "2" @default.
- W4295808910 countsByYear W42958089102023 @default.
- W4295808910 crossrefType "journal-article" @default.
- W4295808910 hasAuthorship W4295808910A5043318864 @default.
- W4295808910 hasAuthorship W4295808910A5043650123 @default.
- W4295808910 hasAuthorship W4295808910A5043844658 @default.
- W4295808910 hasAuthorship W4295808910A5044379017 @default.
- W4295808910 hasAuthorship W4295808910A5073692772 @default.
- W4295808910 hasBestOaLocation W42958089101 @default.
- W4295808910 hasConcept C108583219 @default.
- W4295808910 hasConcept C121608353 @default.
- W4295808910 hasConcept C126322002 @default.
- W4295808910 hasConcept C126838900 @default.
- W4295808910 hasConcept C142724271 @default.
- W4295808910 hasConcept C154945302 @default.
- W4295808910 hasConcept C2775934546 @default.
- W4295808910 hasConcept C2777423100 @default.
- W4295808910 hasConcept C2780472235 @default.
- W4295808910 hasConcept C41008148 @default.
- W4295808910 hasConcept C530470458 @default.
- W4295808910 hasConcept C71924100 @default.
- W4295808910 hasConcept C72563966 @default.
- W4295808910 hasConceptScore W4295808910C108583219 @default.
- W4295808910 hasConceptScore W4295808910C121608353 @default.
- W4295808910 hasConceptScore W4295808910C126322002 @default.
- W4295808910 hasConceptScore W4295808910C126838900 @default.
- W4295808910 hasConceptScore W4295808910C142724271 @default.
- W4295808910 hasConceptScore W4295808910C154945302 @default.
- W4295808910 hasConceptScore W4295808910C2775934546 @default.
- W4295808910 hasConceptScore W4295808910C2777423100 @default.
- W4295808910 hasConceptScore W4295808910C2780472235 @default.
- W4295808910 hasConceptScore W4295808910C41008148 @default.
- W4295808910 hasConceptScore W4295808910C530470458 @default.
- W4295808910 hasConceptScore W4295808910C71924100 @default.
- W4295808910 hasConceptScore W4295808910C72563966 @default.
- W4295808910 hasIssue "9" @default.
- W4295808910 hasLocation W42958089101 @default.
- W4295808910 hasLocation W42958089102 @default.
- W4295808910 hasLocation W42958089103 @default.
- W4295808910 hasOpenAccess W4295808910 @default.
- W4295808910 hasPrimaryLocation W42958089101 @default.
- W4295808910 hasRelatedWork W2013691450 @default.
- W4295808910 hasRelatedWork W2054761170 @default.
- W4295808910 hasRelatedWork W2219774581 @default.
- W4295808910 hasRelatedWork W2363784292 @default.
- W4295808910 hasRelatedWork W2381363910 @default.
- W4295808910 hasRelatedWork W2418746731 @default.
- W4295808910 hasRelatedWork W2790780943 @default.
- W4295808910 hasRelatedWork W2791347945 @default.
- W4295808910 hasRelatedWork W3045695109 @default.
- W4295808910 hasRelatedWork W4382865925 @default.
- W4295808910 hasVolume "11" @default.
- W4295808910 isParatext "false" @default.
- W4295808910 isRetracted "false" @default.
- W4295808910 workType "article" @default.