Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295837024> ?p ?o ?g. }
- W4295837024 endingPage "947" @default.
- W4295837024 startingPage "939" @default.
- W4295837024 abstract "Left ventricular dilatation (LVD) and left ventricular hypertrophy (LVH) are risk factors for heart failure, and their detection improves heart failure screening. This study aimed to investigate the ability of deep learning to detect LVD and LVH from a 12-lead electrocardiogram (ECG). Using ECG and echocardiographic data, we developed deep learning and machine learning models to detect LVD and LVH. We also examined conventional ECG criteria for the diagnosis of LVH. We calculated the area under the receiver operating characteristic (AUROC) curve, sensitivity, specificity, and accuracy of each model and compared the performance of the models. We analyzed data for 18,954 patients (mean age (standard deviation): 64.2 (16.5) years, men: 56.7%). For the detection of LVD, the value (95% confidence interval) of the AUROC was 0.810 (0.801-0.819) for the deep learning model, and this was significantly higher than that of the logistic regression and random forest methods (P < 0.001). The AUROCs for the logistic regression and random forest methods (machine learning models) were 0.770 (0.761-0.779) and 0.757 (0.747-0.767), respectively. For the detection of LVH, the AUROC was 0.784 (0.777-0.791) for the deep learning model, and this was significantly higher than that of the logistic regression and random forest methods and conventional ECG criteria (P < 0.001). The AUROCs for the logistic regression and random forest methods were 0.758 (0.751-0.765) and 0.716 (0.708-0.724), respectively. This study suggests that deep learning is a useful method to detect LVD and LVH from 12-lead ECGs." @default.
- W4295837024 created "2022-09-15" @default.
- W4295837024 creator A5003165755 @default.
- W4295837024 creator A5010778291 @default.
- W4295837024 creator A5012160589 @default.
- W4295837024 creator A5019110883 @default.
- W4295837024 creator A5028895701 @default.
- W4295837024 creator A5029486318 @default.
- W4295837024 creator A5036145018 @default.
- W4295837024 creator A5044657759 @default.
- W4295837024 creator A5046013878 @default.
- W4295837024 creator A5047611581 @default.
- W4295837024 creator A5048513868 @default.
- W4295837024 creator A5050954941 @default.
- W4295837024 creator A5056457660 @default.
- W4295837024 creator A5057781163 @default.
- W4295837024 creator A5058020193 @default.
- W4295837024 creator A5059358409 @default.
- W4295837024 creator A5066658224 @default.
- W4295837024 creator A5076381135 @default.
- W4295837024 creator A5083452391 @default.
- W4295837024 date "2022-09-30" @default.
- W4295837024 modified "2023-10-06" @default.
- W4295837024 title "Automatic Detection of Left Ventricular Dilatation and Hypertrophy from Electrocardiograms Using Deep Learning" @default.
- W4295837024 cites W1603989139 @default.
- W4295837024 cites W2021537935 @default.
- W4295837024 cites W2032797878 @default.
- W4295837024 cites W2042293234 @default.
- W4295837024 cites W2075169235 @default.
- W4295837024 cites W2095804932 @default.
- W4295837024 cites W2112374696 @default.
- W4295837024 cites W2114044187 @default.
- W4295837024 cites W2115750582 @default.
- W4295837024 cites W2124624517 @default.
- W4295837024 cites W2129605874 @default.
- W4295837024 cites W2152865365 @default.
- W4295837024 cites W2157825442 @default.
- W4295837024 cites W2195520254 @default.
- W4295837024 cites W2328176404 @default.
- W4295837024 cites W2334503613 @default.
- W4295837024 cites W2610602137 @default.
- W4295837024 cites W2946751363 @default.
- W4295837024 cites W2966611464 @default.
- W4295837024 cites W2994403349 @default.
- W4295837024 cites W3032168743 @default.
- W4295837024 cites W3102564565 @default.
- W4295837024 cites W3109676774 @default.
- W4295837024 cites W3154408234 @default.
- W4295837024 cites W3172090230 @default.
- W4295837024 cites W3194348931 @default.
- W4295837024 cites W3201153148 @default.
- W4295837024 cites W3216861964 @default.
- W4295837024 cites W4226334832 @default.
- W4295837024 doi "https://doi.org/10.1536/ihj.22-132" @default.
- W4295837024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36104234" @default.
- W4295837024 hasPublicationYear "2022" @default.
- W4295837024 type Work @default.
- W4295837024 citedByCount "1" @default.
- W4295837024 countsByYear W42958370242023 @default.
- W4295837024 crossrefType "journal-article" @default.
- W4295837024 hasAuthorship W4295837024A5003165755 @default.
- W4295837024 hasAuthorship W4295837024A5010778291 @default.
- W4295837024 hasAuthorship W4295837024A5012160589 @default.
- W4295837024 hasAuthorship W4295837024A5019110883 @default.
- W4295837024 hasAuthorship W4295837024A5028895701 @default.
- W4295837024 hasAuthorship W4295837024A5029486318 @default.
- W4295837024 hasAuthorship W4295837024A5036145018 @default.
- W4295837024 hasAuthorship W4295837024A5044657759 @default.
- W4295837024 hasAuthorship W4295837024A5046013878 @default.
- W4295837024 hasAuthorship W4295837024A5047611581 @default.
- W4295837024 hasAuthorship W4295837024A5048513868 @default.
- W4295837024 hasAuthorship W4295837024A5050954941 @default.
- W4295837024 hasAuthorship W4295837024A5056457660 @default.
- W4295837024 hasAuthorship W4295837024A5057781163 @default.
- W4295837024 hasAuthorship W4295837024A5058020193 @default.
- W4295837024 hasAuthorship W4295837024A5059358409 @default.
- W4295837024 hasAuthorship W4295837024A5066658224 @default.
- W4295837024 hasAuthorship W4295837024A5076381135 @default.
- W4295837024 hasAuthorship W4295837024A5083452391 @default.
- W4295837024 hasBestOaLocation W42958370241 @default.
- W4295837024 hasConcept C119857082 @default.
- W4295837024 hasConcept C126322002 @default.
- W4295837024 hasConcept C151956035 @default.
- W4295837024 hasConcept C154945302 @default.
- W4295837024 hasConcept C164705383 @default.
- W4295837024 hasConcept C169258074 @default.
- W4295837024 hasConcept C2776002628 @default.
- W4295837024 hasConcept C2780040984 @default.
- W4295837024 hasConcept C41008148 @default.
- W4295837024 hasConcept C44249647 @default.
- W4295837024 hasConcept C58471807 @default.
- W4295837024 hasConcept C71924100 @default.
- W4295837024 hasConcept C84393581 @default.
- W4295837024 hasConceptScore W4295837024C119857082 @default.
- W4295837024 hasConceptScore W4295837024C126322002 @default.
- W4295837024 hasConceptScore W4295837024C151956035 @default.
- W4295837024 hasConceptScore W4295837024C154945302 @default.
- W4295837024 hasConceptScore W4295837024C164705383 @default.