Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295854865> ?p ?o ?g. }
- W4295854865 endingPage "102999" @default.
- W4295854865 startingPage "102999" @default.
- W4295854865 abstract "National forest inventories (NFI) are important for the assessment of the state and development of forests. Traditional NFIs often rely on statistical sampling approaches as well as expert assessment which may suffer from observer bias and may lack robustness for time series analysis. Over the course of the last decade, close-range remote sensing techniques such as terrestrial and mobile laser scanning became ever more established for the assessment of three-dimensional (3D) forest structure. With the ongoing trend to make the systems smaller, easier to use and more efficient, the pathway is being opened for an operational inclusion of such devices within the framework of an NFI to support the traditional field assessment. Close-range remote sensing could potentially speed up field inventory work as well as increase the area in which certain parameters are assessed. Benchmarks are needed to evaluate the performance of different close-range remote sensing devices and approaches, both in terms of efficiency as well as accuracy. In this study we evaluate the performance of two terrestrial (TLS), one handheld mobile (PLS) and two drone based (UAVLS) laser scanning systems to detect trees and extract the diameter at breast height (DBH) in three plots with a steep gradient in tree and understorey vegetation density. As a novelty, we also tested the acquisition of 3D point-clouds using a low-cost action camera (GoPro) in conjunction with the Structure from Motion (SfM) technique and compared its performance with those of the more costly LiDAR devices. Among the many parameters evaluated in traditional NFIs, the focus of the performance evaluation of this study is set on the automatic tree detection and DBH extraction. The results showed that TLS delivers the highest tree detection rate (TDR) of up to 94.6% under leaf-off and up to 82% under leaf-on conditions and a relative RMSE (rRMSE) for the DBH extraction between 2.5 and 9%, depending on the undergrowth complexity. The tested PLS system (leaf-on) achieved a TDR of up to 80% with an rRMSE between 3.7 and 5.8%. The tested UAVLS systems showed lowest TDR of less than 77% under leaf-off and less than 37% under leaf-on conditions. The novel GoPro approach achieved a TDR of up to 53% under leaf-on conditions. The reduced TDR can be explained by the reduced area coverage due to the chosen circular acquisition path taken with the GoPro approach. The DBH extraction performance on the other hand is comparable to those of the LiDAR devices with an rRMSE between 2 and 9%. Further benchmarks are needed in order to fully assess the applicability of these systems in the framework of an NFI. Especially the robustness under varying forest conditions (seasonality) and over a broader range of forest types and canopy structure has to be evaluated." @default.
- W4295854865 created "2022-09-15" @default.
- W4295854865 creator A5027450737 @default.
- W4295854865 creator A5047318229 @default.
- W4295854865 creator A5066172287 @default.
- W4295854865 creator A5081235716 @default.
- W4295854865 date "2022-09-01" @default.
- W4295854865 modified "2023-10-05" @default.
- W4295854865 title "Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest" @default.
- W4295854865 cites W1971304633 @default.
- W4295854865 cites W2030222098 @default.
- W4295854865 cites W2094636757 @default.
- W4295854865 cites W2146881125 @default.
- W4295854865 cites W2280788228 @default.
- W4295854865 cites W2395696537 @default.
- W4295854865 cites W2511290955 @default.
- W4295854865 cites W2536342094 @default.
- W4295854865 cites W2617356757 @default.
- W4295854865 cites W2740121437 @default.
- W4295854865 cites W2766684008 @default.
- W4295854865 cites W2768000522 @default.
- W4295854865 cites W2788960441 @default.
- W4295854865 cites W2791056138 @default.
- W4295854865 cites W2794665001 @default.
- W4295854865 cites W2808883217 @default.
- W4295854865 cites W2887631307 @default.
- W4295854865 cites W2912510744 @default.
- W4295854865 cites W2920797839 @default.
- W4295854865 cites W2921352593 @default.
- W4295854865 cites W2941004385 @default.
- W4295854865 cites W2941082889 @default.
- W4295854865 cites W2944892195 @default.
- W4295854865 cites W3024401514 @default.
- W4295854865 cites W3080319051 @default.
- W4295854865 cites W3088507381 @default.
- W4295854865 cites W4246967890 @default.
- W4295854865 doi "https://doi.org/10.1016/j.jag.2022.102999" @default.
- W4295854865 hasPublicationYear "2022" @default.
- W4295854865 type Work @default.
- W4295854865 citedByCount "3" @default.
- W4295854865 countsByYear W42958548652022 @default.
- W4295854865 countsByYear W42958548652023 @default.
- W4295854865 crossrefType "journal-article" @default.
- W4295854865 hasAuthorship W4295854865A5027450737 @default.
- W4295854865 hasAuthorship W4295854865A5047318229 @default.
- W4295854865 hasAuthorship W4295854865A5066172287 @default.
- W4295854865 hasAuthorship W4295854865A5081235716 @default.
- W4295854865 hasBestOaLocation W42958548651 @default.
- W4295854865 hasConcept C10161872 @default.
- W4295854865 hasConcept C117455697 @default.
- W4295854865 hasConcept C120665830 @default.
- W4295854865 hasConcept C121332964 @default.
- W4295854865 hasConcept C131979681 @default.
- W4295854865 hasConcept C141349535 @default.
- W4295854865 hasConcept C146159030 @default.
- W4295854865 hasConcept C147103442 @default.
- W4295854865 hasConcept C154945302 @default.
- W4295854865 hasConcept C205649164 @default.
- W4295854865 hasConcept C2776821279 @default.
- W4295854865 hasConcept C28631016 @default.
- W4295854865 hasConcept C39432304 @default.
- W4295854865 hasConcept C41008148 @default.
- W4295854865 hasConcept C51399673 @default.
- W4295854865 hasConcept C520434653 @default.
- W4295854865 hasConcept C62649853 @default.
- W4295854865 hasConcept C97137747 @default.
- W4295854865 hasConceptScore W4295854865C10161872 @default.
- W4295854865 hasConceptScore W4295854865C117455697 @default.
- W4295854865 hasConceptScore W4295854865C120665830 @default.
- W4295854865 hasConceptScore W4295854865C121332964 @default.
- W4295854865 hasConceptScore W4295854865C131979681 @default.
- W4295854865 hasConceptScore W4295854865C141349535 @default.
- W4295854865 hasConceptScore W4295854865C146159030 @default.
- W4295854865 hasConceptScore W4295854865C147103442 @default.
- W4295854865 hasConceptScore W4295854865C154945302 @default.
- W4295854865 hasConceptScore W4295854865C205649164 @default.
- W4295854865 hasConceptScore W4295854865C2776821279 @default.
- W4295854865 hasConceptScore W4295854865C28631016 @default.
- W4295854865 hasConceptScore W4295854865C39432304 @default.
- W4295854865 hasConceptScore W4295854865C41008148 @default.
- W4295854865 hasConceptScore W4295854865C51399673 @default.
- W4295854865 hasConceptScore W4295854865C520434653 @default.
- W4295854865 hasConceptScore W4295854865C62649853 @default.
- W4295854865 hasConceptScore W4295854865C97137747 @default.
- W4295854865 hasLocation W42958548651 @default.
- W4295854865 hasLocation W42958548652 @default.
- W4295854865 hasOpenAccess W4295854865 @default.
- W4295854865 hasPrimaryLocation W42958548651 @default.
- W4295854865 hasRelatedWork W2335177719 @default.
- W4295854865 hasRelatedWork W2467941523 @default.
- W4295854865 hasRelatedWork W2492508298 @default.
- W4295854865 hasRelatedWork W2543661874 @default.
- W4295854865 hasRelatedWork W2771153279 @default.
- W4295854865 hasRelatedWork W3165704192 @default.
- W4295854865 hasRelatedWork W3199889907 @default.
- W4295854865 hasRelatedWork W4281960486 @default.
- W4295854865 hasRelatedWork W4295988083 @default.
- W4295854865 hasRelatedWork W4366775409 @default.