Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295855144> ?p ?o ?g. }
- W4295855144 endingPage "7642" @default.
- W4295855144 startingPage "7631" @default.
- W4295855144 abstract "Currently, large quantities of remote sensing images with different resolutions are available for earth observation and land monitoring, which are inevitably demanding intelligent analysis techniques for accurately identifying and classifying land use (LU). This article proposes an adaptive multi-scale superpixel embedding convolutional neural network architecture (AMUSE-CNN) for tackling land use classification. Initially, the images are parsed via the superpixel representation so that the object based analysis (via a superpixel embedding CNN scheme) can be carried out with the pixel context and neighborhood information. Then, a multi-scale convolutional neural network (MS-CNN) is proposed to classify the superpixel based images by identifying object features across a variety of scales simultaneously in which multiple window sizes are used to fit to the various geometries of different LU classes. Furthermore, a proposed adaptive strategy is applied to best exert the classification capability of MS-CNN. Subsequently two modules are developed to fully implement the AMUSE-CNN architecture. More specifically, Module I is to determine the most suitable classes for each window size (scale) by applying majority voting to a series of MS-CNNs. Module II carries out the classification of the classes identified in Module I for the given scale used in MS-CNN and therefore complete the LU classification of the entire classes. The proposed AMUSE-CNN architecture is both quantitatively and qualitatively validated using remote sensing data collected from two cities, Kano and Lagos in Nigeria due to the spatially complex land use distribution. Experimental results show the superior performance of our approach against several state-of-the-art techniques." @default.
- W4295855144 created "2022-09-15" @default.
- W4295855144 creator A5020605545 @default.
- W4295855144 creator A5032720866 @default.
- W4295855144 creator A5034681736 @default.
- W4295855144 creator A5041232755 @default.
- W4295855144 creator A5047351323 @default.
- W4295855144 creator A5048795590 @default.
- W4295855144 creator A5053739348 @default.
- W4295855144 creator A5084505894 @default.
- W4295855144 date "2022-01-01" @default.
- W4295855144 modified "2023-09-26" @default.
- W4295855144 title "Adaptive Multiscale Superpixel Embedding Convolutional Neural Network for Land Use Classification" @default.
- W4295855144 cites W1932847118 @default.
- W4295855144 cites W1984792953 @default.
- W4295855144 cites W2023930442 @default.
- W4295855144 cites W2027455141 @default.
- W4295855144 cites W2067191022 @default.
- W4295855144 cites W2097117768 @default.
- W4295855144 cites W2103079830 @default.
- W4295855144 cites W2114698059 @default.
- W4295855144 cites W2118246710 @default.
- W4295855144 cites W2335165545 @default.
- W4295855144 cites W2500751094 @default.
- W4295855144 cites W2518897583 @default.
- W4295855144 cites W2740144340 @default.
- W4295855144 cites W2779530678 @default.
- W4295855144 cites W2789676998 @default.
- W4295855144 cites W2789688775 @default.
- W4295855144 cites W2792365373 @default.
- W4295855144 cites W2810004461 @default.
- W4295855144 cites W2940726923 @default.
- W4295855144 cites W3010398094 @default.
- W4295855144 cites W3022140654 @default.
- W4295855144 cites W3047443805 @default.
- W4295855144 cites W3048631361 @default.
- W4295855144 cites W3101012758 @default.
- W4295855144 cites W3209540366 @default.
- W4295855144 cites W4214894031 @default.
- W4295855144 cites W4300171661 @default.
- W4295855144 doi "https://doi.org/10.1109/jstars.2022.3203234" @default.
- W4295855144 hasPublicationYear "2022" @default.
- W4295855144 type Work @default.
- W4295855144 citedByCount "1" @default.
- W4295855144 countsByYear W42958551442023 @default.
- W4295855144 crossrefType "journal-article" @default.
- W4295855144 hasAuthorship W4295855144A5020605545 @default.
- W4295855144 hasAuthorship W4295855144A5032720866 @default.
- W4295855144 hasAuthorship W4295855144A5034681736 @default.
- W4295855144 hasAuthorship W4295855144A5041232755 @default.
- W4295855144 hasAuthorship W4295855144A5047351323 @default.
- W4295855144 hasAuthorship W4295855144A5048795590 @default.
- W4295855144 hasAuthorship W4295855144A5053739348 @default.
- W4295855144 hasAuthorship W4295855144A5084505894 @default.
- W4295855144 hasBestOaLocation W42958551441 @default.
- W4295855144 hasConcept C115961682 @default.
- W4295855144 hasConcept C121332964 @default.
- W4295855144 hasConcept C151730666 @default.
- W4295855144 hasConcept C153180895 @default.
- W4295855144 hasConcept C154945302 @default.
- W4295855144 hasConcept C160633673 @default.
- W4295855144 hasConcept C2778755073 @default.
- W4295855144 hasConcept C2779343474 @default.
- W4295855144 hasConcept C41008148 @default.
- W4295855144 hasConcept C41608201 @default.
- W4295855144 hasConcept C62520636 @default.
- W4295855144 hasConcept C75294576 @default.
- W4295855144 hasConcept C81363708 @default.
- W4295855144 hasConcept C86803240 @default.
- W4295855144 hasConceptScore W4295855144C115961682 @default.
- W4295855144 hasConceptScore W4295855144C121332964 @default.
- W4295855144 hasConceptScore W4295855144C151730666 @default.
- W4295855144 hasConceptScore W4295855144C153180895 @default.
- W4295855144 hasConceptScore W4295855144C154945302 @default.
- W4295855144 hasConceptScore W4295855144C160633673 @default.
- W4295855144 hasConceptScore W4295855144C2778755073 @default.
- W4295855144 hasConceptScore W4295855144C2779343474 @default.
- W4295855144 hasConceptScore W4295855144C41008148 @default.
- W4295855144 hasConceptScore W4295855144C41608201 @default.
- W4295855144 hasConceptScore W4295855144C62520636 @default.
- W4295855144 hasConceptScore W4295855144C75294576 @default.
- W4295855144 hasConceptScore W4295855144C81363708 @default.
- W4295855144 hasConceptScore W4295855144C86803240 @default.
- W4295855144 hasLocation W42958551441 @default.
- W4295855144 hasLocation W42958551442 @default.
- W4295855144 hasLocation W42958551443 @default.
- W4295855144 hasLocation W42958551444 @default.
- W4295855144 hasOpenAccess W4295855144 @default.
- W4295855144 hasPrimaryLocation W42958551441 @default.
- W4295855144 hasRelatedWork W2136485282 @default.
- W4295855144 hasRelatedWork W2509146328 @default.
- W4295855144 hasRelatedWork W2546871836 @default.
- W4295855144 hasRelatedWork W2742991909 @default.
- W4295855144 hasRelatedWork W2766604260 @default.
- W4295855144 hasRelatedWork W2767651786 @default.
- W4295855144 hasRelatedWork W2912288872 @default.
- W4295855144 hasRelatedWork W2986507176 @default.
- W4295855144 hasRelatedWork W3012393889 @default.