Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295864190> ?p ?o ?g. }
- W4295864190 endingPage "4422" @default.
- W4295864190 startingPage "4422" @default.
- W4295864190 abstract "Carbon dioxide (CO2) is one of the main greenhouse gases leading to global warming, and the ocean is the largest carbon reservoir on the earth that plays an important role in regulating CO2 concentration on a global scale. The column-averaged dry-air mole fraction of atmospheric CO2 (XCO2) is a key parameter in describing ocean carbon content. In this paper, the Data Interpolation Empirical Orthogonal Function (DINEOF) and the Bayesian Maximum Entropy (BME) methods are combined to interpolate XCO2 data of Orbiting Carbon Observatory 2 (OCO-2) and Orbiting Carbon Observatory 3 (OCO-3) from January to December 2020 occurring within the geographical range of 15–45°N and 120–150°E. At the first stage of our proposed analysis, spatiotemporal information was used by the DINEOF method to perform XCO2 interpolation that improved data coverage; at the second stage, the DINEOF-generated interpolation results were regarded as soft data and were subsequently assimilated using the BME method to obtain improved XCO2 interpolation values. The performance of the synthetic DINEOF–BME interpolation method was evaluated by means of a five-fold cross-validation method. The results showed that the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), and the Bias of the DINEOF-based OCO-2 and OCO-3 interpolations were 2.106 ppm, 3.046 ppm, and 1.035 ppm, respectively. On the other hand, the MAE, RMSE, and Bias of the cross-validation results obtained by the DINEOF–BME were 1.285 ppm, 2.422 ppm, and −0.085 ppm, respectively, i.e., smaller than the results obtained by DINEOF. In addition, based on the in situ measured XCO2 data provided by the Total Carbon Column Observing Network (TCCON), the original OCO-2 and OCO-3 data were combined and compared with the interpolated products of the synthetic DINEOF–BME framework. The accuracy of the original OCO-2 and OCO-3 products is lower than the DINEOF–BME-generated XCO2 products in terms of MAE (1.751 ppm vs. 2.616 ppm), RMSE (2.877 ppm vs. 3.566 ppm) and Bias (1.379 ppm vs 1.622 ppm), the spatiotemporal coverage of XCO2 product also improved dramatically from 16% to 100%. Lastly, this study demonstrated the feasibility of the synthetic DINEOF–BME approach for XCO2 interpolation purposes and the ability of the BME method to be successfully combined with other techniques." @default.
- W4295864190 created "2022-09-15" @default.
- W4295864190 creator A5019943830 @default.
- W4295864190 creator A5038170876 @default.
- W4295864190 creator A5062894234 @default.
- W4295864190 creator A5085867269 @default.
- W4295864190 creator A5088755290 @default.
- W4295864190 date "2022-09-05" @default.
- W4295864190 modified "2023-10-17" @default.
- W4295864190 title "Application and Analysis of XCO2 Data from OCO Satellite Using a Synthetic DINEOF–BME Spatiotemporal Interpolation Framework" @default.
- W4295864190 cites W1528531870 @default.
- W4295864190 cites W1697937526 @default.
- W4295864190 cites W1964706288 @default.
- W4295864190 cites W1965446559 @default.
- W4295864190 cites W1978343218 @default.
- W4295864190 cites W1978988124 @default.
- W4295864190 cites W1983835937 @default.
- W4295864190 cites W1986881638 @default.
- W4295864190 cites W1994405035 @default.
- W4295864190 cites W1994426843 @default.
- W4295864190 cites W2012471223 @default.
- W4295864190 cites W2033226768 @default.
- W4295864190 cites W2059794098 @default.
- W4295864190 cites W2087045989 @default.
- W4295864190 cites W2088325294 @default.
- W4295864190 cites W2110465139 @default.
- W4295864190 cites W2126669641 @default.
- W4295864190 cites W2128309924 @default.
- W4295864190 cites W2134245825 @default.
- W4295864190 cites W2135585583 @default.
- W4295864190 cites W2144276939 @default.
- W4295864190 cites W2146840333 @default.
- W4295864190 cites W2157234197 @default.
- W4295864190 cites W2157834331 @default.
- W4295864190 cites W2259374129 @default.
- W4295864190 cites W2285791658 @default.
- W4295864190 cites W2294798173 @default.
- W4295864190 cites W2529373853 @default.
- W4295864190 cites W2607627803 @default.
- W4295864190 cites W2734974836 @default.
- W4295864190 cites W2761385501 @default.
- W4295864190 cites W2886765247 @default.
- W4295864190 cites W2896709794 @default.
- W4295864190 cites W2899658391 @default.
- W4295864190 cites W2901338759 @default.
- W4295864190 cites W2995976122 @default.
- W4295864190 cites W3004862633 @default.
- W4295864190 cites W3081932258 @default.
- W4295864190 cites W3174576752 @default.
- W4295864190 cites W4233785118 @default.
- W4295864190 cites W4240659544 @default.
- W4295864190 doi "https://doi.org/10.3390/rs14174422" @default.
- W4295864190 hasPublicationYear "2022" @default.
- W4295864190 type Work @default.
- W4295864190 citedByCount "4" @default.
- W4295864190 countsByYear W42958641902023 @default.
- W4295864190 crossrefType "journal-article" @default.
- W4295864190 hasAuthorship W4295864190A5019943830 @default.
- W4295864190 hasAuthorship W4295864190A5038170876 @default.
- W4295864190 hasAuthorship W4295864190A5062894234 @default.
- W4295864190 hasAuthorship W4295864190A5085867269 @default.
- W4295864190 hasAuthorship W4295864190A5088755290 @default.
- W4295864190 hasBestOaLocation W42958641901 @default.
- W4295864190 hasConcept C104779481 @default.
- W4295864190 hasConcept C105795698 @default.
- W4295864190 hasConcept C11413529 @default.
- W4295864190 hasConcept C121332964 @default.
- W4295864190 hasConcept C121684516 @default.
- W4295864190 hasConcept C127313418 @default.
- W4295864190 hasConcept C1276947 @default.
- W4295864190 hasConcept C13724139 @default.
- W4295864190 hasConcept C137800194 @default.
- W4295864190 hasConcept C139945424 @default.
- W4295864190 hasConcept C140205800 @default.
- W4295864190 hasConcept C153294291 @default.
- W4295864190 hasConcept C19269812 @default.
- W4295864190 hasConcept C2779919027 @default.
- W4295864190 hasConcept C33923547 @default.
- W4295864190 hasConcept C39432304 @default.
- W4295864190 hasConcept C41008148 @default.
- W4295864190 hasConcept C44870925 @default.
- W4295864190 hasConcept C502989409 @default.
- W4295864190 hasConcept C62649853 @default.
- W4295864190 hasConcept C91586092 @default.
- W4295864190 hasConceptScore W4295864190C104779481 @default.
- W4295864190 hasConceptScore W4295864190C105795698 @default.
- W4295864190 hasConceptScore W4295864190C11413529 @default.
- W4295864190 hasConceptScore W4295864190C121332964 @default.
- W4295864190 hasConceptScore W4295864190C121684516 @default.
- W4295864190 hasConceptScore W4295864190C127313418 @default.
- W4295864190 hasConceptScore W4295864190C1276947 @default.
- W4295864190 hasConceptScore W4295864190C13724139 @default.
- W4295864190 hasConceptScore W4295864190C137800194 @default.
- W4295864190 hasConceptScore W4295864190C139945424 @default.
- W4295864190 hasConceptScore W4295864190C140205800 @default.
- W4295864190 hasConceptScore W4295864190C153294291 @default.
- W4295864190 hasConceptScore W4295864190C19269812 @default.
- W4295864190 hasConceptScore W4295864190C2779919027 @default.