Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295865071> ?p ?o ?g. }
- W4295865071 endingPage "11094" @default.
- W4295865071 startingPage "11094" @default.
- W4295865071 abstract "Predicting household vehicle ownership (HVO) is a crucial component of travel demand forecasting. Furthermore, reliable HVO prediction is critical for achieving sustainable transportation development objectives in an era of rapid urbanization. This research predicted the HVO using a support vector machine (SVM) model optimized using the Bayesian Optimization (BO) algorithm. BO is used to determine the optimal SVM parameter values. This hybrid model was applied to two datasets derived from the US National Household Travel Survey dataset. Thus, two optimized SVM models were developed, namely SVMBO#1 and SVMBO#2. Using the confusion matrix, accuracy, receiver operating characteristic (ROC), and area under the ROC, the outcomes of these two hybrid models were examined. Additionally, the results of hybrid SVM models were compared with those of other machine learning models. The results demonstrated that the BO algorithm enhanced the performance of the standard SVM model for predicting the HVO. The BO method determined the Gaussian kernel to be the optimal kernel function for both datasets. The performance of the SVM#1 model was improved by 4.27% and 5.16% for the training and testing phases, respectively. For SVM#2 model, the performance of this model was improved by 1.20% and 2.14% for the training and testing phases, respectively. Moreover, the BO method enhanced the AUC of the SVM models used to predict the HVO. The hybrid SVM models also outperformed other machine learning models developed in this study. The findings of this study showed that SVM models hybridized with the BO algorithm can effectively predict the HVO and can be employed in the process of travel demand forecasting." @default.
- W4295865071 created "2022-09-15" @default.
- W4295865071 creator A5016611136 @default.
- W4295865071 creator A5021896593 @default.
- W4295865071 creator A5058662188 @default.
- W4295865071 creator A5080716190 @default.
- W4295865071 date "2022-09-05" @default.
- W4295865071 modified "2023-09-30" @default.
- W4295865071 title "Targeting Sustainable Transportation Development: The Support Vector Machine and the Bayesian Optimization Algorithm for Classifying Household Vehicle Ownership" @default.
- W4295865071 cites W1964357740 @default.
- W4295865071 cites W1967444754 @default.
- W4295865071 cites W1975838814 @default.
- W4295865071 cites W1984758736 @default.
- W4295865071 cites W2000556173 @default.
- W4295865071 cites W2013790206 @default.
- W4295865071 cites W2019456450 @default.
- W4295865071 cites W2048490287 @default.
- W4295865071 cites W2057958684 @default.
- W4295865071 cites W2072955302 @default.
- W4295865071 cites W2085852090 @default.
- W4295865071 cites W2091435714 @default.
- W4295865071 cites W2125900606 @default.
- W4295865071 cites W2129025153 @default.
- W4295865071 cites W2144475703 @default.
- W4295865071 cites W2153635508 @default.
- W4295865071 cites W2154570520 @default.
- W4295865071 cites W2203167467 @default.
- W4295865071 cites W2343462218 @default.
- W4295865071 cites W2529137277 @default.
- W4295865071 cites W2560136288 @default.
- W4295865071 cites W2739931579 @default.
- W4295865071 cites W2793758168 @default.
- W4295865071 cites W2810939645 @default.
- W4295865071 cites W2896118788 @default.
- W4295865071 cites W2930108727 @default.
- W4295865071 cites W2942352524 @default.
- W4295865071 cites W2947453870 @default.
- W4295865071 cites W2981581709 @default.
- W4295865071 cites W2982215945 @default.
- W4295865071 cites W2990045613 @default.
- W4295865071 cites W2998472560 @default.
- W4295865071 cites W2998788451 @default.
- W4295865071 cites W3011945729 @default.
- W4295865071 cites W3018320921 @default.
- W4295865071 cites W3032913569 @default.
- W4295865071 cites W3036974678 @default.
- W4295865071 cites W3041064370 @default.
- W4295865071 cites W3048895281 @default.
- W4295865071 cites W3081720239 @default.
- W4295865071 cites W3092698495 @default.
- W4295865071 cites W3111221461 @default.
- W4295865071 cites W3124768203 @default.
- W4295865071 cites W3130904866 @default.
- W4295865071 cites W3134721967 @default.
- W4295865071 cites W3154176337 @default.
- W4295865071 cites W3167769675 @default.
- W4295865071 cites W3170571963 @default.
- W4295865071 cites W3171582011 @default.
- W4295865071 cites W3193706481 @default.
- W4295865071 cites W3212645139 @default.
- W4295865071 cites W3215029754 @default.
- W4295865071 cites W3216006067 @default.
- W4295865071 cites W4200077961 @default.
- W4295865071 cites W4205347717 @default.
- W4295865071 cites W4220912805 @default.
- W4295865071 cites W4221111993 @default.
- W4295865071 cites W4239510810 @default.
- W4295865071 doi "https://doi.org/10.3390/su141711094" @default.
- W4295865071 hasPublicationYear "2022" @default.
- W4295865071 type Work @default.
- W4295865071 citedByCount "4" @default.
- W4295865071 countsByYear W42958650712022 @default.
- W4295865071 countsByYear W42958650712023 @default.
- W4295865071 crossrefType "journal-article" @default.
- W4295865071 hasAuthorship W4295865071A5016611136 @default.
- W4295865071 hasAuthorship W4295865071A5021896593 @default.
- W4295865071 hasAuthorship W4295865071A5058662188 @default.
- W4295865071 hasAuthorship W4295865071A5080716190 @default.
- W4295865071 hasBestOaLocation W42958650711 @default.
- W4295865071 hasConcept C11413529 @default.
- W4295865071 hasConcept C114614502 @default.
- W4295865071 hasConcept C119857082 @default.
- W4295865071 hasConcept C12267149 @default.
- W4295865071 hasConcept C138602881 @default.
- W4295865071 hasConcept C154945302 @default.
- W4295865071 hasConcept C2778049539 @default.
- W4295865071 hasConcept C33923547 @default.
- W4295865071 hasConcept C41008148 @default.
- W4295865071 hasConcept C74193536 @default.
- W4295865071 hasConcept C8880873 @default.
- W4295865071 hasConceptScore W4295865071C11413529 @default.
- W4295865071 hasConceptScore W4295865071C114614502 @default.
- W4295865071 hasConceptScore W4295865071C119857082 @default.
- W4295865071 hasConceptScore W4295865071C12267149 @default.
- W4295865071 hasConceptScore W4295865071C138602881 @default.
- W4295865071 hasConceptScore W4295865071C154945302 @default.
- W4295865071 hasConceptScore W4295865071C2778049539 @default.
- W4295865071 hasConceptScore W4295865071C33923547 @default.