Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295873141> ?p ?o ?g. }
- W4295873141 endingPage "10659" @default.
- W4295873141 startingPage "10641" @default.
- W4295873141 abstract "Abstract Effective mining of social media, which consists of a large number of users is a challenging task. Traditional approaches rely on the analysis of text data related to users to accomplish this task. However, text data lacks significant information about the social users and their associated groups. In this paper, we propose CommuNety, a deep learning system for the prediction of cohesive networks using face images from photo albums. The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network. The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network. We extensively evaluate the proposed technique on PIPA dataset and compare with state-of-the-art methods. Our experimental results demonstrate the superior performance of the proposed technique for the prediction of relationship between different individuals and the cohesiveness of communities." @default.
- W4295873141 created "2022-09-15" @default.
- W4295873141 creator A5001285639 @default.
- W4295873141 creator A5047549903 @default.
- W4295873141 creator A5049303874 @default.
- W4295873141 creator A5066619575 @default.
- W4295873141 date "2022-09-10" @default.
- W4295873141 modified "2023-10-01" @default.
- W4295873141 title "CommuNety: deep learning-based face recognition system for the prediction of cohesive communities" @default.
- W4295873141 cites W1892323599 @default.
- W4295873141 cites W1973381698 @default.
- W4295873141 cites W1975727187 @default.
- W4295873141 cites W2007749178 @default.
- W4295873141 cites W2019507850 @default.
- W4295873141 cites W2024677982 @default.
- W4295873141 cites W2062118960 @default.
- W4295873141 cites W2075604006 @default.
- W4295873141 cites W2106309274 @default.
- W4295873141 cites W2126400504 @default.
- W4295873141 cites W2145287260 @default.
- W4295873141 cites W2187016681 @default.
- W4295873141 cites W2191588813 @default.
- W4295873141 cites W2325939864 @default.
- W4295873141 cites W2574111200 @default.
- W4295873141 cites W2750171493 @default.
- W4295873141 cites W2765521113 @default.
- W4295873141 cites W2901490773 @default.
- W4295873141 cites W2904199664 @default.
- W4295873141 cites W2912719407 @default.
- W4295873141 cites W2945170981 @default.
- W4295873141 cites W2946215047 @default.
- W4295873141 cites W2964498858 @default.
- W4295873141 cites W2970006986 @default.
- W4295873141 cites W2995530198 @default.
- W4295873141 cites W2998153539 @default.
- W4295873141 cites W3004980423 @default.
- W4295873141 cites W3006561702 @default.
- W4295873141 cites W3097096317 @default.
- W4295873141 cites W3103512193 @default.
- W4295873141 cites W4200265157 @default.
- W4295873141 doi "https://doi.org/10.1007/s11042-022-13741-y" @default.
- W4295873141 hasPublicationYear "2022" @default.
- W4295873141 type Work @default.
- W4295873141 citedByCount "1" @default.
- W4295873141 countsByYear W42958731412023 @default.
- W4295873141 crossrefType "journal-article" @default.
- W4295873141 hasAuthorship W4295873141A5001285639 @default.
- W4295873141 hasAuthorship W4295873141A5047549903 @default.
- W4295873141 hasAuthorship W4295873141A5049303874 @default.
- W4295873141 hasAuthorship W4295873141A5066619575 @default.
- W4295873141 hasBestOaLocation W42958731411 @default.
- W4295873141 hasConcept C108583219 @default.
- W4295873141 hasConcept C119857082 @default.
- W4295873141 hasConcept C144024400 @default.
- W4295873141 hasConcept C14641543 @default.
- W4295873141 hasConcept C153180895 @default.
- W4295873141 hasConcept C154945302 @default.
- W4295873141 hasConcept C15744967 @default.
- W4295873141 hasConcept C162324750 @default.
- W4295873141 hasConcept C187736073 @default.
- W4295873141 hasConcept C189430467 @default.
- W4295873141 hasConcept C2779304628 @default.
- W4295873141 hasConcept C2780451532 @default.
- W4295873141 hasConcept C31510193 @default.
- W4295873141 hasConcept C36289849 @default.
- W4295873141 hasConcept C41008148 @default.
- W4295873141 hasConcept C77805123 @default.
- W4295873141 hasConceptScore W4295873141C108583219 @default.
- W4295873141 hasConceptScore W4295873141C119857082 @default.
- W4295873141 hasConceptScore W4295873141C144024400 @default.
- W4295873141 hasConceptScore W4295873141C14641543 @default.
- W4295873141 hasConceptScore W4295873141C153180895 @default.
- W4295873141 hasConceptScore W4295873141C154945302 @default.
- W4295873141 hasConceptScore W4295873141C15744967 @default.
- W4295873141 hasConceptScore W4295873141C162324750 @default.
- W4295873141 hasConceptScore W4295873141C187736073 @default.
- W4295873141 hasConceptScore W4295873141C189430467 @default.
- W4295873141 hasConceptScore W4295873141C2779304628 @default.
- W4295873141 hasConceptScore W4295873141C2780451532 @default.
- W4295873141 hasConceptScore W4295873141C31510193 @default.
- W4295873141 hasConceptScore W4295873141C36289849 @default.
- W4295873141 hasConceptScore W4295873141C41008148 @default.
- W4295873141 hasConceptScore W4295873141C77805123 @default.
- W4295873141 hasFunder F4320320988 @default.
- W4295873141 hasIssue "7" @default.
- W4295873141 hasLocation W42958731411 @default.
- W4295873141 hasLocation W42958731412 @default.
- W4295873141 hasLocation W42958731413 @default.
- W4295873141 hasOpenAccess W4295873141 @default.
- W4295873141 hasPrimaryLocation W42958731411 @default.
- W4295873141 hasRelatedWork W2765462099 @default.
- W4295873141 hasRelatedWork W2807287270 @default.
- W4295873141 hasRelatedWork W3014300295 @default.
- W4295873141 hasRelatedWork W4223943233 @default.
- W4295873141 hasRelatedWork W4225161397 @default.
- W4295873141 hasRelatedWork W4312200629 @default.
- W4295873141 hasRelatedWork W4360585206 @default.
- W4295873141 hasRelatedWork W4364306694 @default.