Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295873241> ?p ?o ?g. }
- W4295873241 endingPage "2213" @default.
- W4295873241 startingPage "2193" @default.
- W4295873241 abstract "Accurate fault diagnosis technology is essential for ensuring reliable operation of rotating machinery. However, complex conditions and various damage forms bring challenges to present diagnosis technology. In this study, a novel fault diagnosis method is proposed utilizing the newly developed adaptive resize-residual deep neural networks. The usage of the proposed method consists of three steps. First, the continuous wavelet transform is used to transfer the acquired vibration signals into time–frequency images. Second, the histogram equalization algorithm is applied to enhance the contrast of these images. Finally, the enhanced images are used as the input of newly proposed adaptive resize-residual networks, in which the adaptive resize block can deduce the dimensions of input data by self-learning and feed them into the residual block for pattern recognition. Two experimental cases are designed to evaluate the performance of proposed method. The experimental results indicate that the proposed adaptive resize-residual network obtains superior recognition accuracy and outperforms many state-of-the-art methods." @default.
- W4295873241 created "2022-09-15" @default.
- W4295873241 creator A5036189787 @default.
- W4295873241 creator A5048025910 @default.
- W4295873241 creator A5067435847 @default.
- W4295873241 date "2022-09-10" @default.
- W4295873241 modified "2023-10-16" @default.
- W4295873241 title "Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery" @default.
- W4295873241 cites W2036037031 @default.
- W4295873241 cites W2170563037 @default.
- W4295873241 cites W2498789492 @default.
- W4295873241 cites W2904460913 @default.
- W4295873241 cites W2961566974 @default.
- W4295873241 cites W2963180316 @default.
- W4295873241 cites W2987140681 @default.
- W4295873241 cites W2989424303 @default.
- W4295873241 cites W2990308728 @default.
- W4295873241 cites W3001524754 @default.
- W4295873241 cites W3004640066 @default.
- W4295873241 cites W3010877614 @default.
- W4295873241 cites W3020432805 @default.
- W4295873241 cites W3026339528 @default.
- W4295873241 cites W3026881828 @default.
- W4295873241 cites W3037944824 @default.
- W4295873241 cites W3038030066 @default.
- W4295873241 cites W3044535332 @default.
- W4295873241 cites W3048349609 @default.
- W4295873241 cites W3049639045 @default.
- W4295873241 cites W3061495788 @default.
- W4295873241 cites W3090213729 @default.
- W4295873241 cites W3093592106 @default.
- W4295873241 cites W3094086031 @default.
- W4295873241 cites W3094985807 @default.
- W4295873241 cites W3096237054 @default.
- W4295873241 cites W3097701218 @default.
- W4295873241 cites W3120741450 @default.
- W4295873241 cites W3122126208 @default.
- W4295873241 cites W3126883438 @default.
- W4295873241 cites W3132865516 @default.
- W4295873241 cites W3134731052 @default.
- W4295873241 cites W3142292878 @default.
- W4295873241 cites W3153830894 @default.
- W4295873241 cites W3155552745 @default.
- W4295873241 cites W3155771880 @default.
- W4295873241 cites W3161070622 @default.
- W4295873241 cites W3165824264 @default.
- W4295873241 cites W3170113178 @default.
- W4295873241 cites W3171211495 @default.
- W4295873241 cites W3177962711 @default.
- W4295873241 cites W3181338450 @default.
- W4295873241 cites W3184909220 @default.
- W4295873241 cites W3186002894 @default.
- W4295873241 cites W4205772240 @default.
- W4295873241 cites W4214753187 @default.
- W4295873241 cites W3114123336 @default.
- W4295873241 doi "https://doi.org/10.1177/14759217221122266" @default.
- W4295873241 hasPublicationYear "2022" @default.
- W4295873241 type Work @default.
- W4295873241 citedByCount "3" @default.
- W4295873241 countsByYear W42958732412023 @default.
- W4295873241 crossrefType "journal-article" @default.
- W4295873241 hasAuthorship W4295873241A5036189787 @default.
- W4295873241 hasAuthorship W4295873241A5048025910 @default.
- W4295873241 hasAuthorship W4295873241A5067435847 @default.
- W4295873241 hasConcept C108583219 @default.
- W4295873241 hasConcept C11413529 @default.
- W4295873241 hasConcept C115961682 @default.
- W4295873241 hasConcept C127313418 @default.
- W4295873241 hasConcept C136943445 @default.
- W4295873241 hasConcept C153180895 @default.
- W4295873241 hasConcept C154945302 @default.
- W4295873241 hasConcept C155512373 @default.
- W4295873241 hasConcept C165205528 @default.
- W4295873241 hasConcept C175551986 @default.
- W4295873241 hasConcept C2524010 @default.
- W4295873241 hasConcept C2777210771 @default.
- W4295873241 hasConcept C30387639 @default.
- W4295873241 hasConcept C33923547 @default.
- W4295873241 hasConcept C41008148 @default.
- W4295873241 hasConcept C50644808 @default.
- W4295873241 hasConcept C53533937 @default.
- W4295873241 hasConceptScore W4295873241C108583219 @default.
- W4295873241 hasConceptScore W4295873241C11413529 @default.
- W4295873241 hasConceptScore W4295873241C115961682 @default.
- W4295873241 hasConceptScore W4295873241C127313418 @default.
- W4295873241 hasConceptScore W4295873241C136943445 @default.
- W4295873241 hasConceptScore W4295873241C153180895 @default.
- W4295873241 hasConceptScore W4295873241C154945302 @default.
- W4295873241 hasConceptScore W4295873241C155512373 @default.
- W4295873241 hasConceptScore W4295873241C165205528 @default.
- W4295873241 hasConceptScore W4295873241C175551986 @default.
- W4295873241 hasConceptScore W4295873241C2524010 @default.
- W4295873241 hasConceptScore W4295873241C2777210771 @default.
- W4295873241 hasConceptScore W4295873241C30387639 @default.
- W4295873241 hasConceptScore W4295873241C33923547 @default.
- W4295873241 hasConceptScore W4295873241C41008148 @default.
- W4295873241 hasConceptScore W4295873241C50644808 @default.
- W4295873241 hasConceptScore W4295873241C53533937 @default.