Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295882786> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4295882786 endingPage "11" @default.
- W4295882786 startingPage "1" @default.
- W4295882786 abstract "Laboratory equipment planning is a very important task in modern enterprise management. Laboratory equipment planning by computer algorithm is a very complex NP-hard combinatorial optimization problem, so it is impossible to find an accurate algorithm in polynomial time. In this study, an improved genetic algorithm is used to solve and analyze the comprehensive planning of laboratory equipment. After analyzing the traditional heuristic algorithm and genetic algorithm to solve the simple laboratory equipment planning problem, the simple laboratory equipment planning is designed and implemented according to the principle of the heuristic algorithm. Finally, the algorithm is implemented in Python. A general equipment planning based on genetic algorithm with two selection operators is realized. Two constraints of test start and completion time are given. In the scenario of using multiple test equipment for a test project, the possible solutions of laboratory equipment planning under given constraints are analyzed. The efficiency coefficient is not necessarily a constant, it is related to the output characteristics of energy equipment. Three independent planning algorithms are used to solve the actual test requirements. One is the planning method based on manual test scheduling in the test cycle of experimental instruments, the other is the genetic algorithm for gene location crossover operator, and the third is the genetic algorithm for experimental part crossover operator. The planning solutions obtained by the three algorithms are compared from three aspects: the shortest time to complete the test, the calculation time of the algorithm, and the utilization of the test equipment." @default.
- W4295882786 created "2022-09-16" @default.
- W4295882786 creator A5056910115 @default.
- W4295882786 date "2022-09-12" @default.
- W4295882786 modified "2023-09-27" @default.
- W4295882786 title "Comprehensive Planning of Laboratory Equipment Based on Genetic Algorithms" @default.
- W4295882786 cites W2782322345 @default.
- W4295882786 cites W2785722638 @default.
- W4295882786 cites W2794030250 @default.
- W4295882786 cites W2798000375 @default.
- W4295882786 cites W2804299858 @default.
- W4295882786 cites W2891425084 @default.
- W4295882786 cites W2903981726 @default.
- W4295882786 cites W2953317406 @default.
- W4295882786 cites W2955396085 @default.
- W4295882786 cites W2957141153 @default.
- W4295882786 cites W2972396893 @default.
- W4295882786 cites W2985996869 @default.
- W4295882786 cites W2987129950 @default.
- W4295882786 cites W3006700317 @default.
- W4295882786 cites W3012109984 @default.
- W4295882786 cites W3039743013 @default.
- W4295882786 cites W3094704314 @default.
- W4295882786 cites W3098430959 @default.
- W4295882786 cites W3194985907 @default.
- W4295882786 doi "https://doi.org/10.1155/2022/5242251" @default.
- W4295882786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36131900" @default.
- W4295882786 hasPublicationYear "2022" @default.
- W4295882786 type Work @default.
- W4295882786 citedByCount "0" @default.
- W4295882786 crossrefType "journal-article" @default.
- W4295882786 hasAuthorship W4295882786A5056910115 @default.
- W4295882786 hasBestOaLocation W42958827861 @default.
- W4295882786 hasConcept C104317684 @default.
- W4295882786 hasConcept C11413529 @default.
- W4295882786 hasConcept C119857082 @default.
- W4295882786 hasConcept C122507166 @default.
- W4295882786 hasConcept C126255220 @default.
- W4295882786 hasConcept C154945302 @default.
- W4295882786 hasConcept C158448853 @default.
- W4295882786 hasConcept C17020691 @default.
- W4295882786 hasConcept C173801870 @default.
- W4295882786 hasConcept C185592680 @default.
- W4295882786 hasConcept C206729178 @default.
- W4295882786 hasConcept C33923547 @default.
- W4295882786 hasConcept C41008148 @default.
- W4295882786 hasConcept C55493867 @default.
- W4295882786 hasConcept C86339819 @default.
- W4295882786 hasConcept C8880873 @default.
- W4295882786 hasConceptScore W4295882786C104317684 @default.
- W4295882786 hasConceptScore W4295882786C11413529 @default.
- W4295882786 hasConceptScore W4295882786C119857082 @default.
- W4295882786 hasConceptScore W4295882786C122507166 @default.
- W4295882786 hasConceptScore W4295882786C126255220 @default.
- W4295882786 hasConceptScore W4295882786C154945302 @default.
- W4295882786 hasConceptScore W4295882786C158448853 @default.
- W4295882786 hasConceptScore W4295882786C17020691 @default.
- W4295882786 hasConceptScore W4295882786C173801870 @default.
- W4295882786 hasConceptScore W4295882786C185592680 @default.
- W4295882786 hasConceptScore W4295882786C206729178 @default.
- W4295882786 hasConceptScore W4295882786C33923547 @default.
- W4295882786 hasConceptScore W4295882786C41008148 @default.
- W4295882786 hasConceptScore W4295882786C55493867 @default.
- W4295882786 hasConceptScore W4295882786C86339819 @default.
- W4295882786 hasConceptScore W4295882786C8880873 @default.
- W4295882786 hasLocation W42958827861 @default.
- W4295882786 hasLocation W42958827862 @default.
- W4295882786 hasLocation W42958827863 @default.
- W4295882786 hasOpenAccess W4295882786 @default.
- W4295882786 hasPrimaryLocation W42958827861 @default.
- W4295882786 hasRelatedWork W2110798240 @default.
- W4295882786 hasRelatedWork W2114386582 @default.
- W4295882786 hasRelatedWork W2349256536 @default.
- W4295882786 hasRelatedWork W2358885468 @default.
- W4295882786 hasRelatedWork W2359871316 @default.
- W4295882786 hasRelatedWork W2374064181 @default.
- W4295882786 hasRelatedWork W2379884904 @default.
- W4295882786 hasRelatedWork W2389555976 @default.
- W4295882786 hasRelatedWork W2391116541 @default.
- W4295882786 hasRelatedWork W4297200539 @default.
- W4295882786 hasVolume "2022" @default.
- W4295882786 isParatext "false" @default.
- W4295882786 isRetracted "false" @default.
- W4295882786 workType "article" @default.