Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295897367> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4295897367 abstract "Convolutional neural networks (CNN) for medical imaging are constrained by the number of annotated data required in the training stage. Usually, manual annotation is considered to be the gold standard. However, medical imaging datasets that include expert manual segmentation are scarce as this step is time-consuming, and therefore expensive. Moreover, single-rater manual annotation is most often used in data-driven approaches making the network optimal with respect to only that single expert. In this work, we propose a CNN for brain extraction in magnetic resonance (MR) imaging, that is fully trained with what we refer to as silver standard masks. Our method consists of 1) developing a dataset with silver standard masks as input, and implementing both 2) a tri-planar method using parallel 2D U-Net-based CNNs (referred to as CONSNet) and 3) an auto-context implementation of CONSNet. The term CONSNet refers to our integrated approach, i.e., training with silver standard masks and using a 2D U-Net-based architecture. Our results showed that we outperformed (i.e., larger Dice coefficients) the current state-of-the-art SS methods. Our use of silver standard masks reduced the cost of manual annotation, decreased inter-intra-rater variability, and avoided CNN segmentation super-specialization towards one specific manual annotation guideline that can occur when gold standard masks are used. Moreover, the usage of silver standard masks greatly enlarges the volume of input annotated data because we can relatively easily generate labels for unlabeled data. In addition, our method has the advantage that, once trained, it takes only a few seconds to process a typical brain image volume using modern hardware, such as a high-end graphics processing unit. In contrast, many of the other competitive methods have processing times in the order of minutes." @default.
- W4295897367 created "2022-09-16" @default.
- W4295897367 creator A5017698959 @default.
- W4295897367 creator A5035088462 @default.
- W4295897367 creator A5075919718 @default.
- W4295897367 creator A5085398611 @default.
- W4295897367 creator A5087970571 @default.
- W4295897367 date "2018-04-13" @default.
- W4295897367 modified "2023-10-18" @default.
- W4295897367 title "Convolutional Neural Networks for Skull-stripping in Brain MR Imaging using Consensus-based Silver standard Masks" @default.
- W4295897367 doi "https://doi.org/10.48550/arxiv.1804.04988" @default.
- W4295897367 hasPublicationYear "2018" @default.
- W4295897367 type Work @default.
- W4295897367 citedByCount "0" @default.
- W4295897367 crossrefType "posted-content" @default.
- W4295897367 hasAuthorship W4295897367A5017698959 @default.
- W4295897367 hasAuthorship W4295897367A5035088462 @default.
- W4295897367 hasAuthorship W4295897367A5075919718 @default.
- W4295897367 hasAuthorship W4295897367A5085398611 @default.
- W4295897367 hasAuthorship W4295897367A5087970571 @default.
- W4295897367 hasBestOaLocation W42958973671 @default.
- W4295897367 hasConcept C105795698 @default.
- W4295897367 hasConcept C108583219 @default.
- W4295897367 hasConcept C124504099 @default.
- W4295897367 hasConcept C151730666 @default.
- W4295897367 hasConcept C153180895 @default.
- W4295897367 hasConcept C154945302 @default.
- W4295897367 hasConcept C163892561 @default.
- W4295897367 hasConcept C2776321320 @default.
- W4295897367 hasConcept C2779343474 @default.
- W4295897367 hasConcept C33923547 @default.
- W4295897367 hasConcept C40993552 @default.
- W4295897367 hasConcept C41008148 @default.
- W4295897367 hasConcept C81363708 @default.
- W4295897367 hasConcept C86803240 @default.
- W4295897367 hasConcept C89600930 @default.
- W4295897367 hasConceptScore W4295897367C105795698 @default.
- W4295897367 hasConceptScore W4295897367C108583219 @default.
- W4295897367 hasConceptScore W4295897367C124504099 @default.
- W4295897367 hasConceptScore W4295897367C151730666 @default.
- W4295897367 hasConceptScore W4295897367C153180895 @default.
- W4295897367 hasConceptScore W4295897367C154945302 @default.
- W4295897367 hasConceptScore W4295897367C163892561 @default.
- W4295897367 hasConceptScore W4295897367C2776321320 @default.
- W4295897367 hasConceptScore W4295897367C2779343474 @default.
- W4295897367 hasConceptScore W4295897367C33923547 @default.
- W4295897367 hasConceptScore W4295897367C40993552 @default.
- W4295897367 hasConceptScore W4295897367C41008148 @default.
- W4295897367 hasConceptScore W4295897367C81363708 @default.
- W4295897367 hasConceptScore W4295897367C86803240 @default.
- W4295897367 hasConceptScore W4295897367C89600930 @default.
- W4295897367 hasLocation W42958973671 @default.
- W4295897367 hasOpenAccess W4295897367 @default.
- W4295897367 hasPrimaryLocation W42958973671 @default.
- W4295897367 hasRelatedWork W2732542196 @default.
- W4295897367 hasRelatedWork W2738221750 @default.
- W4295897367 hasRelatedWork W2795329967 @default.
- W4295897367 hasRelatedWork W2948658236 @default.
- W4295897367 hasRelatedWork W2960184797 @default.
- W4295897367 hasRelatedWork W3102253946 @default.
- W4295897367 hasRelatedWork W3135174555 @default.
- W4295897367 hasRelatedWork W3144574764 @default.
- W4295897367 hasRelatedWork W4226289457 @default.
- W4295897367 hasRelatedWork W4293211451 @default.
- W4295897367 isParatext "false" @default.
- W4295897367 isRetracted "false" @default.
- W4295897367 workType "article" @default.