Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295902283> ?p ?o ?g. }
- W4295902283 endingPage "2265" @default.
- W4295902283 startingPage "2255" @default.
- W4295902283 abstract "Screening for biofilm inhibition by purified natural compounds is difficult due to compounds’ chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%." @default.
- W4295902283 created "2022-09-16" @default.
- W4295902283 creator A5013575724 @default.
- W4295902283 creator A5025196257 @default.
- W4295902283 creator A5051466394 @default.
- W4295902283 creator A5061215864 @default.
- W4295902283 creator A5073197402 @default.
- W4295902283 creator A5074642592 @default.
- W4295902283 creator A5078916398 @default.
- W4295902283 date "2022-09-15" @default.
- W4295902283 modified "2023-10-18" @default.
- W4295902283 title "A Combined Bayesian and Similarity-Based Approach for Predicting <i>E. coli</i> Biofilm Inhibition by Phenolic Natural Compounds" @default.
- W4295902283 cites W123848475 @default.
- W4295902283 cites W2064963922 @default.
- W4295902283 cites W2066273100 @default.
- W4295902283 cites W2070300719 @default.
- W4295902283 cites W2083214203 @default.
- W4295902283 cites W2094768851 @default.
- W4295902283 cites W2103018059 @default.
- W4295902283 cites W2104478003 @default.
- W4295902283 cites W2109433105 @default.
- W4295902283 cites W2115933619 @default.
- W4295902283 cites W2118970688 @default.
- W4295902283 cites W2130539506 @default.
- W4295902283 cites W2133329020 @default.
- W4295902283 cites W2156752198 @default.
- W4295902283 cites W2160240386 @default.
- W4295902283 cites W2162749433 @default.
- W4295902283 cites W2165477460 @default.
- W4295902283 cites W2169478013 @default.
- W4295902283 cites W2169678694 @default.
- W4295902283 cites W2217402295 @default.
- W4295902283 cites W2298346855 @default.
- W4295902283 cites W2301345562 @default.
- W4295902283 cites W2562627217 @default.
- W4295902283 cites W2586308107 @default.
- W4295902283 cites W2613021898 @default.
- W4295902283 cites W2761783016 @default.
- W4295902283 cites W2895424644 @default.
- W4295902283 cites W2901667615 @default.
- W4295902283 cites W2901719664 @default.
- W4295902283 cites W2921476316 @default.
- W4295902283 cites W2937307539 @default.
- W4295902283 cites W2997578645 @default.
- W4295902283 doi "https://doi.org/10.1021/acs.jnatprod.2c00005" @default.
- W4295902283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36107719" @default.
- W4295902283 hasPublicationYear "2022" @default.
- W4295902283 type Work @default.
- W4295902283 citedByCount "2" @default.
- W4295902283 countsByYear W42959022832022 @default.
- W4295902283 countsByYear W42959022832023 @default.
- W4295902283 crossrefType "journal-article" @default.
- W4295902283 hasAuthorship W4295902283A5013575724 @default.
- W4295902283 hasAuthorship W4295902283A5025196257 @default.
- W4295902283 hasAuthorship W4295902283A5051466394 @default.
- W4295902283 hasAuthorship W4295902283A5061215864 @default.
- W4295902283 hasAuthorship W4295902283A5073197402 @default.
- W4295902283 hasAuthorship W4295902283A5074642592 @default.
- W4295902283 hasAuthorship W4295902283A5078916398 @default.
- W4295902283 hasConcept C103278499 @default.
- W4295902283 hasConcept C104317684 @default.
- W4295902283 hasConcept C115961682 @default.
- W4295902283 hasConcept C119857082 @default.
- W4295902283 hasConcept C127413603 @default.
- W4295902283 hasConcept C154945302 @default.
- W4295902283 hasConcept C164126121 @default.
- W4295902283 hasConcept C164923092 @default.
- W4295902283 hasConcept C183696295 @default.
- W4295902283 hasConcept C185592680 @default.
- W4295902283 hasConcept C186060115 @default.
- W4295902283 hasConcept C2775905019 @default.
- W4295902283 hasConcept C2778810118 @default.
- W4295902283 hasConcept C41008148 @default.
- W4295902283 hasConcept C43617362 @default.
- W4295902283 hasConcept C523546767 @default.
- W4295902283 hasConcept C54355233 @default.
- W4295902283 hasConcept C55493867 @default.
- W4295902283 hasConcept C58123911 @default.
- W4295902283 hasConcept C70721500 @default.
- W4295902283 hasConcept C74187038 @default.
- W4295902283 hasConcept C86803240 @default.
- W4295902283 hasConcept C99726746 @default.
- W4295902283 hasConceptScore W4295902283C103278499 @default.
- W4295902283 hasConceptScore W4295902283C104317684 @default.
- W4295902283 hasConceptScore W4295902283C115961682 @default.
- W4295902283 hasConceptScore W4295902283C119857082 @default.
- W4295902283 hasConceptScore W4295902283C127413603 @default.
- W4295902283 hasConceptScore W4295902283C154945302 @default.
- W4295902283 hasConceptScore W4295902283C164126121 @default.
- W4295902283 hasConceptScore W4295902283C164923092 @default.
- W4295902283 hasConceptScore W4295902283C183696295 @default.
- W4295902283 hasConceptScore W4295902283C185592680 @default.
- W4295902283 hasConceptScore W4295902283C186060115 @default.
- W4295902283 hasConceptScore W4295902283C2775905019 @default.
- W4295902283 hasConceptScore W4295902283C2778810118 @default.
- W4295902283 hasConceptScore W4295902283C41008148 @default.
- W4295902283 hasConceptScore W4295902283C43617362 @default.
- W4295902283 hasConceptScore W4295902283C523546767 @default.