Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295935314> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4295935314 endingPage "443" @default.
- W4295935314 startingPage "433" @default.
- W4295935314 abstract "Recovering cardiac transmembrane potential (TMP) from body surface potential (BSP) plays an important role in the noninvasive diagnosis of heart diseases. However, most current solutions for TMP recovery are typically proposed and designed to follow a static mapping paradigm between TMP and BSP, which ignores the inherent dynamic activation process of cardiomyocytes during the cardiac cycle. In this paper, we propose to introduce the physiological information of this dynamic activation process in the objective functions. Based on this, we further establish a physiological model based deep learning framework for cardiac TMP recovery. First, the objective functions of our physiological model are deduced via a two-variable diffusion-reaction system, where the static mapping and the dynamic activation process of cardiomyocytes are jointly modeled. Then, a data-driven Kalman Filtering network (KFNet) is adopted to solve the proposed objective functions. Specifically, the KFNet consists of two components: a state transfer network (SSNet) is employed for directly predicting the prior estimation; furthermore, a Kalman gain network (KGNet) is employed for adaptively learning the gain coefficients. In our experiments, the proposed physiological model is verified on the 1200 simulated subjects. The quantified analysis shows the proposed method can accurately recover the TMP, with the low LE values 10.5 for the ectopic pacing location task and the high SSIM values 0.75 for the myocardial infarction detection task. These powerful performances completely verify the effectiveness of our model." @default.
- W4295935314 created "2022-09-16" @default.
- W4295935314 creator A5002681207 @default.
- W4295935314 creator A5061764811 @default.
- W4295935314 creator A5084912833 @default.
- W4295935314 date "2022-01-01" @default.
- W4295935314 modified "2023-10-06" @default.
- W4295935314 title "Physiological Model Based Deep Learning Framework for Cardiac TMP Recovery" @default.
- W4295935314 cites W1998893062 @default.
- W4295935314 cites W2021611778 @default.
- W4295935314 cites W2064569583 @default.
- W4295935314 cites W2068055953 @default.
- W4295935314 cites W2071470777 @default.
- W4295935314 cites W2090690414 @default.
- W4295935314 cites W2091807822 @default.
- W4295935314 cites W2104646655 @default.
- W4295935314 cites W2110440965 @default.
- W4295935314 cites W2119033078 @default.
- W4295935314 cites W2125491645 @default.
- W4295935314 cites W2139251298 @default.
- W4295935314 cites W2143828148 @default.
- W4295935314 cites W2157199424 @default.
- W4295935314 cites W2162981237 @default.
- W4295935314 cites W2164522996 @default.
- W4295935314 cites W2798559986 @default.
- W4295935314 cites W2890475733 @default.
- W4295935314 cites W2914574467 @default.
- W4295935314 cites W2941262964 @default.
- W4295935314 cites W2979784614 @default.
- W4295935314 cites W3043281494 @default.
- W4295935314 cites W3099822470 @default.
- W4295935314 cites W3160271958 @default.
- W4295935314 cites W3165037951 @default.
- W4295935314 cites W3199091656 @default.
- W4295935314 cites W3201543593 @default.
- W4295935314 cites W4233844974 @default.
- W4295935314 doi "https://doi.org/10.1007/978-3-031-16434-7_42" @default.
- W4295935314 hasPublicationYear "2022" @default.
- W4295935314 type Work @default.
- W4295935314 citedByCount "1" @default.
- W4295935314 crossrefType "book-chapter" @default.
- W4295935314 hasAuthorship W4295935314A5002681207 @default.
- W4295935314 hasAuthorship W4295935314A5061764811 @default.
- W4295935314 hasAuthorship W4295935314A5084912833 @default.
- W4295935314 hasConcept C111919701 @default.
- W4295935314 hasConcept C11413529 @default.
- W4295935314 hasConcept C150899416 @default.
- W4295935314 hasConcept C154945302 @default.
- W4295935314 hasConcept C157286648 @default.
- W4295935314 hasConcept C162324750 @default.
- W4295935314 hasConcept C187736073 @default.
- W4295935314 hasConcept C2780451532 @default.
- W4295935314 hasConcept C41008148 @default.
- W4295935314 hasConcept C98045186 @default.
- W4295935314 hasConceptScore W4295935314C111919701 @default.
- W4295935314 hasConceptScore W4295935314C11413529 @default.
- W4295935314 hasConceptScore W4295935314C150899416 @default.
- W4295935314 hasConceptScore W4295935314C154945302 @default.
- W4295935314 hasConceptScore W4295935314C157286648 @default.
- W4295935314 hasConceptScore W4295935314C162324750 @default.
- W4295935314 hasConceptScore W4295935314C187736073 @default.
- W4295935314 hasConceptScore W4295935314C2780451532 @default.
- W4295935314 hasConceptScore W4295935314C41008148 @default.
- W4295935314 hasConceptScore W4295935314C98045186 @default.
- W4295935314 hasLocation W42959353141 @default.
- W4295935314 hasOpenAccess W4295935314 @default.
- W4295935314 hasPrimaryLocation W42959353141 @default.
- W4295935314 hasRelatedWork W1975570126 @default.
- W4295935314 hasRelatedWork W2081647779 @default.
- W4295935314 hasRelatedWork W2889705046 @default.
- W4295935314 hasRelatedWork W3012393889 @default.
- W4295935314 hasRelatedWork W3091976719 @default.
- W4295935314 hasRelatedWork W3128051602 @default.
- W4295935314 hasRelatedWork W3192840557 @default.
- W4295935314 hasRelatedWork W4206784770 @default.
- W4295935314 hasRelatedWork W4237750775 @default.
- W4295935314 hasRelatedWork W4308262314 @default.
- W4295935314 isParatext "false" @default.
- W4295935314 isRetracted "false" @default.
- W4295935314 workType "book-chapter" @default.